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RESUME

Résumé

Le calcul des convolutions cycliques dans
des Corps de Galois est une partie inté&grante
aussi bien de la théorie et de la formulation
de Codage, que de nombreuses applications de
Traitement du Signal, Dans le travail présent
nous introduisons une méthode pour le calcul
des convolutions de ce genre, gui minimise, en
théorie, la complexité des calculs de 1l'algo-
rithme. Nous proposons &galement des structu-
res d' ordinateur pour la réalisation efficace
de 1' algorithme, et en général pour le calcul
efficace des convolutions dans des Corps de
Galois.

I.Introduction

As is well known [1-5] both cyclic and
non-cyclic convolutions in Galois Fields are
instrumental for the solution of several Sig-
nal Processing [2,9] and many Coding and De-
coding Problems [5,6]. For instance
cyclic convolutions in Galois Fields are need-
ed for the decoding of among others, the BCH
(Bose-Chaudhuri-Hohequem) and the Reed-Solo-
mon codes [5,6].

In the following, GF{(p) (where p is a
prime integer) will be understood to denote
the Galois Field with elements {0,1,..p-11},
and GF(p") = GF(p,f_(x)) the Galois Field ge-

th degree~-polynomial fn(x)and

nerated by the n
composed of all polynomials with degree no
greater than n and coefficients in GF(p). In
GF(pn) multiplication of its element polvno-
mials is defined modulo fn(X) and addition of

the coefficients of the polynomials is defi-

ned modulo p.

SUMMARY

Abstract

The computation of cyclic convolutions
in Galois Fields is an integral part of Cod-
ing Theory and Formulation as well as of ma-
ny signal Processing applications. In this
naper, we introduce a method for the computa-
tion of such convolutions that minimizes, in
theory, the comnutational complexity of the
algorithm. We also propose special-purpose
computer architecture schemes for the effi-
cient realization of the algorithm, and in ge-
neral for efficient calculation of convolu-

tions in Galois Fields.

OQur purpose is the computation of the cyclic
convolution of two seguences h(-+) and u(-)
belonging to GF(pn):

N-1

y(k) = &
i=0

h(i) u(k-1i) (1)

where k,i and k-i are understood to be compu-
ted modulo N. If Y(z), H(z) and U(z)
z-transforms of, respectively, the finite se-
quences {y(0),..,y(N-1)}, {h(0),..,h(N-1)}

and {u(0),..
valent [7,8] to the computation of

are the

,u(N-1)}, then the above is equi-

Y(z) = U(z) H(z) mod (z'-1) (2)
Since multiplications are particularly toil-
some in Galois Fields, the computational com-
plexity of (1) is almost entirely dependent

on the recuired number of multiplications.

It has been shown [7,8,10], that if p is nota
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factor of N and if
K

z -1 = T
i=1

c;(2), ged(c, (2), cj(Z)) =1 (3)
and the factors ci(z) are mutually prime and
irreducible in GF(pn), then the minimum number

of multiplications is

M = 2N-K (4)
(1)

ca u®B h]

and the computation of may be described by

Yy = (5)

where & denotes Kronecker multiplication, ¥,u
and h are vectors composed of the elements of
{u(d)}

and A,B,C matrices of

respectively the sequences {y(i)},
{h(i)}, i=0,1,..,N-1,
respective dimensions NxM, NxM and MxN, fully
(3) . Thus, the

minimum number of multiplications is reached

determined by the factorization

when K is maximum.

Algorithms that achieve high values of K
and thus efficient computation have been cons-
tructed in [6] and [11] for convolutions in
the field GF(2™) by using the above methodo-
led , in [12]
to efficient algorithms in the general case
GF(p") . The results of [6,11] and [12] coin-

cide if p=2. However, none of these algorithms

logy. A different methodology

achieves the theoretically minimum number of
(4).

sent a novel computational method in which the

multiplications of In this paper, we pre-
minimum number of multiplications is achieved,
at the cost however, of the requirement of
special-purpose software or hardware for its
use. The method is presented in Section II.
Proposed special-purpose Computer architectu-~
res for the realization of convolutior are in
Section III. Finally, examples of the applica-
tion of the method are given in Section IV.

IT. Description of the Algorithm

In the following we shall use the nota-
tion a/b to indicate that a divides b and a#b
to indicate the opposite. We first cite with-
out proof the following known theorem [1L
Theorem 1
Suppose that p#N. Then
(a) If N/pn—1, the polynomial zN—1 is fully
reducible in GF(pn) and thus the number of ir-
reducible factors of zN—1 in GF(pn) is K=N.

(b) If N%pn—1, there exists a minimum integer

e such that N/p"€-1.

In the second case, zN—1 is fully reduci-
ble in GF(p"®)

i
N1 = IT (z-a ) (6)
(a is root of &hitv in GF(pn).
To determine the factors ci(z) in (3) it now
(6)

achieve irreducibity of the product of each

suffices to group the factors in so as to
group in GF(pn). This is easily accomplished

by the following procedure [1]. Let S be the

(6) :

set of all indices i in

S = {i=3(S-1/N » 0<3eN=-1} =us,

where each Si , i=1,2,.. is composed of the

(N—1)n, calculated

numbers i, ipn, ipzn,..,ip
D€_4y. It can be seen [1] that the
S NS ;=0

that its union equals S. Each ci(z) in (3) is

modulo (p
subsets Si are disjoint: for i#j and
then determined by the product of all factors
in (6) with indices in the same Si' Thus, K is
the number of the subsets Si of S. Following
the determination of {ci(z)}, the following
simple steps lead to the realization (5) of the

optimum algorithm:

M

Determination of polynomials Ri(z) such that

R.(z) = & 1<igK (7)

i 15 mod cj(z)

where Sij is the Kronecker delta.

(2) Evaluation of
Hi(z) = H(z) mod ci(z), 15igK (8)
Ui(z) = U(z) mod ci(z), 1<igk (9)

(3) Evaluation of
Yi(z) = Hi(z) Ui(z) mod ci(z), 1<igK (10)

(4) Reconstruction of Y(z) (using the Chinese
Remainder Theorem [7])
K

S Y.(z) R.(z) mod z'-1
i=1 * *

Y(z) = (11)

(5).

the matrix operations involving

which correspond precisely to the form
For instance,
A and B in (5)
(8) and
tion by C in (5) corresponds to (10).

correspond respectively to the
operations (9), while the multiplica-
The optimality of the algorithm was

achieved by adhering fully to the general sche-
me of [7,8,10] and thus factoring in (3) 21
on GF(pn). By contrast the non-optimal methods
in [6,11,12] are based on factoring zN—1 on

GF (p) . The practical difficulty of applying

the present "optimal" method stems from the sa-

me distinction.
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Specifically, with the present method the mat-
rices A,B,C in (5) are in GF(pn) hence are po-
lynomials in x, while in [6,11,12] these mat-
rices are composed of numbers in GF(p). Clear-
ly then, efficient application of the present
algorithm requires special software or hard-

ware.

III. Architecture for computing sums in Galois

Fields

We consider the sum

N-1 (12)
a(m) = ¥ Db(k)c(k,m) mod fn(x),p; a,b,ceGF (p)
k=0
Clearly
n-1
b(k) = £ b(k,i) x°; b(k,i)€GF(p) (13)
i=0
n-1
c(k,m=2 c(k,m,3)x?, c(k,m,3)EGF(p) (14)
j=0
From (12,13,14) we obtain
n-1 n-=1
.o i+j
a{m)= % r d(i,j,mx mod fn(x) (15)
i=0  j=0
where N=1
d(i,j,m= I b(k,i) ¢ (k,m,j) modp (16)
k=0

Obviously (16) in its entirety and the reduc-
tion of (15) modulo fn(x) may be performed by
using Read-Only-Memories (ROM's). The remain-
ing simple additions for the evaluation of
(15) may be performed either again by the use
of a ROM or by a simple arithmetic unit.
Another, possibly advantageous formulation of

these equations is given by the combination of

n-1
a(m)= £ £(j,m) mod p 17)
j=0
N-1 ]
£(3,m= I bk c (km3x’ mod £ (x)  (18)
k=0 :
Again, (18) is realized by the use of a ROM

17)
"shifts" by j of the sequence f(j,m). With

while reduces to the summation of

either formulation we are led to architecture
similar to that used in [19,20,15] for the com-
putation of convolutions. Not surprisinly,

(12)
a convolution.

since may represent or by interpreted as
In fact, if this

i.e if c(k,m)=c(m~-k) the archi-

"convolution™”

is invariant,

tecture is simplified:

v

n-1

a(m) = I f£(j,m) mod p (17")
3=0
N-1

£(3,m= I b(k) c (m-k,j)x? mod £, (x) (18")
k= !

as shown in Fig.1. We note that this architec-
ture .is very general and much more efficient
than the classical architecture of Fig.2. For
the special case of GF(2™) the architecture can
be simplified even further since addition may
be performed with simple€XOR gates and each
clock in the ROM will process precisely one bit
of each c(m-k). Thus, the computation time of
each a(m) is reduced to n Tc where Tc is the
clock period, a small fracture of the time re-
quired with the classical architecture of Fig.2.
The form of the multiplier in GF(24) is given
in Fig.3.

Yy sl Ao
Y

LV e E}\mnt <
Let N=3, p=2, n=4. The generating polyno-
mial of GF(2%) is £,(x) = x*4x+1. Since
3/(2%-1), 23-1 is fully reducible in GF(2%):

2 2

23_1 = (2z+1) (z+x°+x) (2+x"+x+1)

Thus, co(z)=z+1, c1(z)=z+x2+x, c2(z)=z+x2+x+1
and from (7),

Ro(z)=zz+z+1

2+x)zz+(x2+x+1)_z+1

2+(x2+x)z+1

R, (z)=(x
R2(2)=(x2+x+1)z
Clearly (8) vields
1+,

2 2
+h1(x +x)+h2(x +x+1)

HO=H(z) mod (z+1)=h0+h

H,=H(z) mod (z+x°+x)=h

1 0

H2=H(z) mod (z+x2+x+1)=h +h1(x2+x+1)+h2(x2+x)

0
Correspondingly,

U0=u0+u1+u2

1=u0+u1(x2+x)+u2(x2+x+1)

2=u0+u1(x2+x+‘l)+u2(x2+x)

following the multiplication

U

U

oo’ Y1=U Y,=U,H

qHyr YU H, (19)

Y0=U

the values of Yy, are determined by using (11):

Y=Y +Y 4T,
B 2 2
Y=Y g +Y ) (x74x41) +Y, (x74x)

_ 2 2
2—Y0+Y1(x +x)+Y2(x +x+1)
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Thus, the convolution requires only the 3 mul-
(19)

retical minimum (4), while the method in [6]

tiplications in in keeping with the theo-
requires 4 multiplications. An important dif-
ference however, is that the method in [61re—
guires no multiplication by power of x, i.e.
no bit-by-bit calculations, while the present
method does.

As a second example, let N=5, p=2 and
n=2. As known, the generating polynomial of
GF(2%) is f,(x)=x’+x+1. Clearly, 5#(2%-1).

However with e=2, 5/226—1 since 223,1=15.

Thus, if a is the first root of GF(24), we
obtain
25—1 = (z—1)(z-a3)(z—a12)(z—a6)(z—a9) (20)

Following the procedure outlined in Section
II, we find the following factorization of
2°-1 in GF(2%):

5

22-1 = (2-1) (22+(x+1) z4+1) (z2+xz+1)

Thus K=3 and the total number of multiplica-
tions will be 2°5-3=7, while the algorithm in
[6] requires 10 multiplications.
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ROM

c(m) c(m-1) c(n=-2) c(m-3) a(m)

Pic.1: Prorosed imnlementation of convolution.

c {m) c(m-1) c(m-2) c(m-3)

L O TH T

a(m)

Tig.2:Classical imnlementation of convolution.

el

4
Fic,.3:Circuit for multinlication over CFR(27).
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