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RESUME

Les systémes autorégressifs modélisés par 1'équa~

tion :

X(n) =

il B~1rg

a, x(n-i) + v(n)
; 1

(1)

i

ne peuvent étre identifiés sans biais que dans le cas
simple oli v(n) est une séquence d'innovations non
corrélées. Cette communication montre une méthode
adaptée au cas particulier ol l'entrée v(n) est telle
que :

v(n) = u(n) + wn) (2)
ot u(n) est une séquence intermittente quelconque,
telle que u(n) = 0, pour n €N , et w(n) est un bruit
blanc de variance o. Cette situation correspond i
plusieurs applications dont la déconvolution des
signaux sismiques et 1l'estimation de l'excitation
laryngiénne dans le processus de la production de la
parole.

On montre d'abord que si la fonction de cofit
utilisée pour la détermination des coefficients a.
est définie comme la somme restreinte sur des
erreurs de prédiction au carré, alors 1l'identifica-
tion converge sans biais. Une forme récursive est
obtenue qui ne nécessite pas la connaissance préala-
ble de l'ensemble mais uniquement d'un court seg-
ment de ol l'algorithme est initié. Lors de cette
initiation, la valeur de o est estimée puis les obser-
vations restantes sont incluses dans la fonction coiit
ou ignorées selon comparaison de l'erreur de prédic-
tion avec 0. La détection de la région d'initiationm,
faisant 1'objet d'une analyse préliminaire, est
rendue aisée par d'éventuelles caractéristiques tempo-
relles de 1l'entrée u(n). Par exemple, dans le cas de
l'excitation laryngienne, la fermeture du larynx
provoquant une brusque tombée de u(n), peut &tre détec-
tée & partir d'une simple analyse préliminaire du
signal x(n).

Enfin, simplicité de programmation et faible
nombre d'opérations sont obtenus griace & 1'utilisation
de transformations de Givens, et rendent le procédé
aisément implantable sur petits systémes fonctionnant
en temps réel,
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SUMMARY

The identification of systems following the
model

1

P
x(n) = ) a,x(n-i) + v(n)

i=1 i
yields a biased estimate of the a parameters if
the excitation signal v(n) is non"white. This pa-
per presents a method that produces exact results
when v(n) is of the form:
2) v(n) = u(n) + w(n)
where u(n) is a general sequence with the property
that u(n) = 0 for some large set?] and w(n) is
white noise with variance &% Such inputs occur in
several practical problems such as seismic decon-
volution or glottal waveform estimation in speech
processing.

It is first shown that if the cost function
used in the determination of the parameters a. is
redefined as the squared errors summed over “n's
restricted to those in7], then the identification
is unbiased. The a priori knowledge of N is shown
unnecessary if a selective recursive least squares
algorithm is used. The observations in M are
selected on-line, using a comparison between the
least squares residual and an estimate for o . ob-
tained during an initiation period. The detection
of this period employs some additional time domain
features of u(n).

Finally, the method is made computationally
efficient by employing Givens' Reduction in the
recursion.
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1. INTRODUCLION

It is well known that attempts to identify
autoregressive (AR) systems of the form

P
(1) x) = § ax@i) + v 2 x"a+ v
i=1
using conventional methods [1] yield biased

estimates of the a; parameters if the driving
signal, v(n), is correlated [2]. In this paper, we
present a modified AR (or linear predictive coding
(LPC)) identification spproach which produces
asymptotically exact results for a certain class of
inputs:

(2)  vin) = uln) + win)

where ul(n) is a general sequence (often
deterministic) with the property that u(n)=0 for
some large set, say M, of, generally nonsequential,
n"s, and win) is a zero mean, variance 02, second
order ergodic, uncorrelated sequence (often included.
to account tor model errors). Random impulse trains
used in seismic models, and periodic impulses or
glottal waveform pulses used in the modelling of
voiced speech are example inputs from this class
which occur in practical problems. The results
derived for the general case in this work are
readily applicable to such specific applications.

2, GENERAL THEQORY

The "covariance" approach yields the estimates
of the aj; parameters given by the familiar set of
equatlons fl,p.l4]:

(3 .Z a6, AG1,3) = 0 (N30,3) | 3 =1, -+, P
i=1
in which, for any sequences x and y, the covariamee
funetion is defined as
N-1
z x(n-1)y(n-3)
n=0
Eqns. (3) are, im turn, the solution to:

(4) ¢Xy(N;i,j) 41

PROBLEM (P): Derive the coetficients of the

P-order linear predictor of the sequence x(n)

which minimizes

4 N1,
(5) I 2 e(n) =N ¢ o (N30,0) = E (MEW)
wheze e(n) % x(n) - Z aix(n—l)
i=]

= tneAprediction error at time n, and where
E(N) = [e(0),.0.,e(N~1)]

Although the scalar solution, (3), is widely popular
in tne speech processing literature, the alternative
formulation of the covariance solution is more
useful in subsequent developments:

6) 2= mwam]taTw xm

where, T
X(N-1) [x(-1)x(1), « x(N-1-1)]
AMN) = [x(N-1) .-. x(N-P)]
This solution is obtained by direct manipulation of
(3) or by solving the prediction problem trom the
more classical "batch least squares" approach (see,
eg+, L|4,Ch.6]). NOTE: Throughout this discussion
we shall assume that the matrix inverse in (6)
exists. Conditions on the verity of this assumption
are given in [2].

e

Now consider solving (P) subject to the

minimization of the modified cost function
T

(7)) J(N) = 2 q(n)e (n) = E(0) Q) EW)
in which Q(N) A dlag(q(O),q(l),...,q(N—l)) and q(n)
is any weighting sequence. This 1is the classic
weighted least squares prediction problem for which
the solution is [4,Ch.6]:

8 am = aTangmmam ] aTamamxan

e a1 T e xan )

in which, ¢"(N) & (1/M){AT(MQUMAW).
We now prove the tundamental result.

THEOREM: The identification of the AR system of (1)
by (8) is asymptotically exact if the q(n) are
chosen such that q{n) = Ipin), where I, is the
indicator function for the set M.

Discugssion. Apparently, the approach suggested by
the theorem requires minimization of the error only
on the data samples, x(n), for which nell, ie., the
criterion becomes
N-1 2
(9)  minimize{J"(N) = ] g(n)e  (n)
n=0 nen
It is not difticult to show that, in the scalar
formulation of the problem, this modified criterion
results in a solution of form (3) where the
covariance functions are replaced by modified
functions:

N-1
= nzoez(n)

(10) ¢;x(N}1 ) == Z x(n-1)x(n-3)

PROOF: Using (1), (29, and the detinitions in (6)

(11) X0 = A(Ma + UMW) + W)

where, (N)= [u(O),...,u(N-l)] and
K= [w(0),vee,wi¥-1)}T, Now using (8), we have
that

(12) am) = 3+L'(N)]'l{lATm)g(N)u(N) +

—A MMUMm }
Using theorems in l2] it is possible to argue that
) remains bounded as No» for all reasonable

data sequences, x(n). The last two terms in the
brackets are N-vectors with jth-elements

\ N-1
(13) ¢xu(N;j,0) -3 nZox(n—j)q(n)U(n)
1 N1 .
=X OX(n—J)u(n)
“i"N 1 L N1
(N 1,00 == ¥ x(@-1)q)w(n) = 5 1 x(n-j)w(n)
n=0 n=0

Clearly, both of these expregglbns are
asymptotically =zero and, hence, the rightmost term
vanishes in the limit. QED

Finally we note that a(N) can be computed
recursively in a sequential weighted least squares
formulation based on (8) [4]. The reader 1is
referred to [5] for specific equations. We omit
these here since a more efficient recursive method
is developed in the following section.

3. SISSI

of A, From (5) and (1), the
error in prediction at time n based on £(N) 1is given

by
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(1) ey = x" () {z-atM} + v()

In particular, consider the decision as to whether
NeM (recall that a(N) is based on the interval
ne[0,N~1]1). If a(N) is a good estimate of @, then
from (14)

(15) eN(N) ~ v(N) = u(N) + w(N)

The decision process is based on the fact that eN(N)
is approximately the model noise at any nen and
should therefore reflect the stochastic properties
of the noise alone. Assume, for example, that w(n)
is mean zero, variance o<, and that, for n¢N, the
average value of u(n) >> 0. Then a typical decision
scheme is

(16) SELECT {neNif ez(n)_f_kcz; né¢N otherwise}

The value of k is chosen in accordance with the
properties of wu(n). Such decision processes are
highly problem dependent and c¢an be much more
sophisticated than (16). Some specific examples
from the class of inputs (2) are discussed in [5].
Any such process is dependent upon the solution of a
more difficult problem, the detection of an
appropriate temporal region in which to initiate the
recursion. The initial time values must be inn in
order to assure unbiased convergence.

Detection of ihke initiation set. In the absence of
useful temporal knowledge, it is possible to extend
the argument above as follows: Let 3S(N) be the AR
solution beginning at time n=s. (Obtained using (3)
or (6) with a readjusted time origin.) Let
s A siN-1 2

(17) ") = ) ()

n=s
Then it is plausible, and has been theoretically
justified in [5], that

(18) )!é [s, si+1]C N $3°@) = No

The discovery of a temporal region x! for which
JS (W) has this property yields an appropriate
initial estimate (assuming that JS(N) is known to
have a much different value for f¢ N. This idea is
similar to that employed by Wong in the
determination of the "closed phase™ of the glottal
excitation in speech processing [6].

2

The analysis suggested above is generally
complex and expensive, In practice, one must take
advantage of available time domain features of u(n)
to derive an efficient procedure, As an example,
consider the case in which u(n) contains rapid
changes in time. Such waveforms occur in the
modelling of speech in which discrete time impulse
trains or lowpass "glottal™ pulse trains with sharp
falling edges [7] are used to excite a resonant
vocal tract model with impulse response h(n).
Laebens has shown in this case that [5]

(19) e(n) = h(n) = (an—én) * u(n) + un)

Since h(n)*(an-gn) represents an averaging process
in cascade with the AR system, the first term in the
sum cannot contain high frequencies and Jjumps in
e(n) must therefore correspond temporally with those
in u(n), the second term. Such Jjumps in e(n) in
this example can serve as indicators of a silent
excitation period to follow.

Having achieved the means to obtain a good
initial estimate for z, and for discerning points in
N, we wish to turn to the derivation of an efficient
recursive algorithm for the solution of (8).

Seuvential procedure Givers* reductiom,
Consider rewriting (8) as

(20) QUMAMMAN) = QUDEN)

which represents a system of N equations and P
unknowns. (Note, however, that there are only
N-1

Z q(n) equations not of the form Q=(.) We now solve
i=1

(20) employing Givens' reduction [8]. The
significance of the Givens' transformation for this
work, in addition to its computational efficiency,
is that it can be performed row-wise, i.e., each
equation can be considered independently of the
others. A second advantage over the classical
recursive least squares algorithm is that it
provides the prediction residuals without requiring
the back substitution for the coefficients, a .,
where ill-conditioning often occurs.

The Givens operations are performed within a
(P+1)X(P+1) working array, ¥ where equations
corresponding to sglected times, n, are entered on
the last row. Two "Givens' rotations" [8] are then
pertormed and the error signal at time n, e(n), is
extracted from the (P+1,P+1) element of H. The
temporal selection process uses a "backup" array,
B, which is updated only when the residual meets
the criterion of (16), e.g. Fig. 1 shows the
flowchart for this procedure. The recursion is
initiated with ¥ and BH full of zeros and the
coefficients are obtained from the final back
substitution at the end of the processing window.

The computational costs per sample using the
modified Givena' method of Gentleman [9] is shown in
Table 1. In this case 50% of the samples were
rejected. The <costs compared with those for a’
recursive least squares algorithm [4,10] demonstrate
a clear advantage for the new method. The absence
of ill-conditioning and the simplicity of the array
processing also represent significant improvements.

SIS3I. The new algorithm which combines the
temporal selection procedure with the efficient
simul taneous equation solution has been named SISSI:
a Silent JInput Selective Sequential Identifier for
AR systems,

4. SPEECH PROCESSING EXAMPLE

We now consider an example application
employing the new method for the estimation of vowel
formants. A simulated speech signal was generated
using a cascade form [11] implementation of a sixth
order AR model with the pole positions corresponding
to the formants of the vowel /i/ at a 10 kHz sample
rate (Fig. 2). The simulator was driven by either
a periodic discrete time impulse train or a periodic
Rosenberg pulse [7] train:

(21) u(n) = {1 - cos [(pi)n/N1], O<n¢N1
{cos[pi(n-N1)/(2.N2) ]}, N1<n¢N2
{0, N2<ng<N3
where N1 was be chosen to be 20 ang N2, 50. In each
case random noise of variance g“ was added to the
input. The period of the waveforms N3, and ¢ were
variable across experiments.

The experimental algorithm is diagrammed in
Fig. 3. In this figure, "BEA"™ and "STL"™ refer to
"batch error analysis", and, "short term LPC,"
methods for detection of the initiation set, ,X N
which are described in [5]. The parameter K in the
figure is the length of the initiation set which was
selected as 20 in order to provide a reasonable
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estimate of the noise variance.

The performance of SISSI, compared with the
standard covariance method for various conditions of
the input, can be evaluated from the data in Tables
2-4. The summary number in each entry in the tables
is the quagratic bias,

P 51172
(22) B=| 7 (a, (W) - a) where N=200 for all
i=1 * . experiments
where, of course, a sixth order "formant®
identification is attempted in each case. Tables 2

and 3 are concerned with the pulse train case.
Table 2 shows the influence of the period of the
pulse train. Note that SISSI produced significantly
better results for all tested periods. Even in the
period = 100 case where the result from conventional
methods would be expected to be minimal, the SISSI
bias is roughly a factor of ten better. In Table 3,
the period of the waveform has been fixed at 30
samples and the noise variance varied. The
signal-to~noise ratio (SNR) is computed as:

(24) SNR =

uncorrupted signal energy per period
2

¢}
Again SISSI outperforms the covariance approach for
all values of ¢ .

Table 4 shows performances when u(n) is the
Rosenburg pulse train described above with period
100. In this example one can see the ~serious bias
effects which can be induced by unmodelled
correlated inputs such as the glottal waveform when
using conventional approaches. The SISSI method
alleviates this problem.

Other examples and further discussion are given
in [5].

5. CONCLUSIONS

An efficient sequential algorithm for the
identification of AR systems excited by a certain
class of correlated inputs has been developed. The
method alleviates the solution bias inherent in
conventional methods by discarding incoming data
points for which the input is not ™"silent."
Theoretical justification for this idea has been
provided.

Two related problem dependent  operational
procedures are inherent in the technique: detection
of sllent input times and the detection of an
appropriate temporal segment upon which to compute
an initial coefficient vector estimate. A framework
for solving these problems has been discussed.

Finally, an important contribution of this work
is the use of the Givens' reduction in the solution
which significantly improves the computational
efficiency of the identification.
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Load the current observation on the
last row of W

Process W , Obtain g(u)]

g0} < ooy

Figure t. Selection Process with Givens' Reduction

Pys 0.9845 / 108.36° P,: 0.9688 £ 82.44°

Z-Plene
-

-1 ) Pys 0.9488 £ 9.72°

Pigure 2. Experiments) Poles Loci

Select the starting point N5, using BEA or STL
E=0, N =0, NR =0, BW = {0} , W = [0]

Table 1. Computational Costs

Multiplications | Additions

Classical Recursive 2 9
Least Squares 2P° + 2P 2.5 + P
Givens' Reduction 2

w/o Square Roots 1.5P" + 6P 4p

Table 2. u(n): Impulse Train: Influence of the Period

Period 200 100 70 30

Cov. Meth. 0.931 E-3 0.701 E-2 0.618 E~-1 0.136 E-0
New Algor. 0.536 E-3 0.614 E-3 0,641 E-3 0,411 E-2

le 3. wu(n): Impulse Train: Influence of Input Noise

SNR (db) 200 40 20 10

Cov. Meth. 0.136 E-0 0.136 E-0 0.142 E-0 0.138 E-0
New Algor. 0.411 E-2 0,417 E-2 0.402 E-2 0,138 E-1

K = NS + NR «+ ¥K

/Load the Nth observation in the last row of W 7

lfeduce the last row of W to 0 , g(N) l

Back-Substitute in W

for a

|

Figure 3. The Experimental Algorigthm

Table 4. u(n): Rosenberg Pulse Train:
Influence of Input Noise

SNR (db) 200 40 20 10

Cov. Meth. 0.855 E+1 0.554 E+1 0.202 E+1 0.930 E-O
New Algor. 0.590 E-3 0.147 E-1 0.173 E-0 0.250 E-0
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