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Résumé:

Une méthode numérique est décrite pour le calcul des transformations spectrales des filtres passe-tout
en treillis. Elle peut &tre appliquée aux fonctions de transfert de deux circuits passe-tout en paralléle, pour
réaliser un filtre accordé, par exemple. La méthode s’appuie sur la configuration Hessenburg orthogonal
de la description de la variable d’état d’un filtre en treillis, et 1’algorithme ainsi obtenu démontre une

excellente stabilité numerique.

Abstract:

A numerical procedure is described for computing spectral transformations of all-pass filters realized
in lattice form. The procedure can be applied, for example, to transfer functions implemented as the
parallel connection of two all-pass filters, thus yielding a tunable filter realization. The method exploits’
the orthogonal Hessenburg structure of the state space description of a lattice filter, and the algorithm

so obtained exhibits excellent numerical stability.

I Introduction

This paper describes a procedure to compute first-
order spectral transformations for a class of recursive digital
filters. Such transformations are useful in spectral analysis
applications where one wants, for instance, a lowpass fil-
ter with variable cutoff frequency, or a bandpass filter with
variable bandwidth. These transformations are also use-
ful in general purpose filter design routines. For example,
if a satisfactory filter design is known for one set of fre-
quency specifications, the design can be transformed to an
alternate set of specifications without having to solve a new
approximation problem.

We treat here the so-called lowpass-to-lowpass trans-
formation [1]:
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The constraint | < 1 ensures that a stable filter maps
to a stable filter. If F(z) is a given lowpass filter with
cutoff frequency w;, and the transformed filter F(1/8(z))
is desired to have a cutoff frequency w,, the parameter « is
chosen according to

_ sin[(wr — ws)/2]
*= e Fw)/2] ()

To implement F(1/8(z)), one is first tempted to use a
realization of F'(z) and replace each delay element (denoted
by “2~1” in a signal flow graph) with the allpass filter 8(z).
In practice though, this leads to delay-free loops, thereby
violating the computability condition of the filter. In gen-
eral, a new set of parameters must instead be computed for
the transformed filter F(1/8(z2)).

A useful class of transfer functions, including Butter-
worth, Chebyshev, and elliptic types, can be written as the
sum of two all-pass functions A;(z) and Ax(z) (2], [3]:

F(z) = 3[A1(2) + Ax(2)]. (3)
The utility of this decomposition comes in noting that the

transformed filter F(1/8(z)) can then be written in the
form

F(1/B(2)) = 5[41(1/B(2)) + 42(1/B(2))],  (4)
where A;(1/8(2)) and A2(1/8(2)) remain allpass functions.
Hence the problem reduces to implementing two tunable
allpass filters. This approach has merit because the allpass
functions can be implemented with structures that exhibit
very low roundoff noise independent of the pole locations of
the filter, a desirable property in tunable filter realizations.
Moreover, an N-th order allpass filter can be completely
described in terms of N parameters (as opposed to 2N +
1 for general N-th order recursive filters), which can be
exploited to obtain a computationally efficient realization.
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Figure 1:
Normalized

Lattice Filter
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II Lattice Allpass Filters

In this section we review briefly the good numerical
properties of allpass filters from a state space viewpoint.
We then examine in greater detail the normalized lattice
filter, and derive the algorithm to compute the transformed
filter parameters. We begin with the following property,
which is a consequence of the Discrete-Time Bounded Real
Lemma [4):

Property 2.1. Let A(z) = Y(2)/U(z) be a stable allpass
filter. Then A(z) admits a realization

R ] e R

such that the system matrix

R2 [;‘t 2] 6)

is orthogonal. Conversely, any system with R orthogonal
is an allpass filter.

The good numerical properties-of allpass filters can be
understood as a consequence of the orthogonal nature of the
state computations. For example, consider the reachability
and observability Grammian matrices K and W associated
with the system:

oo

K = ) A"b(A"b) = AKA' + bb, (Ta)
n=0
[e0]

W = Z(ctA”)’c’A" = A*'WA +cct. . ()
n=0

From orthogonality of R in (6), we have R’R = RR' =1,
which implies that

AA' +bb' =1, (8a)
A'A+ccl =1 (8b)

Comparing these with (7) we identify K = W =1, indepen-
dent of the pole locations of the filter G(#). Such a system
is inherently “balanced” in the system theoretic sense [5],
and accordingly satisfies the conditions in [6] for minimum
roundoff noise appearing at the filter output y(n). Thus,
if A(z) can be implemented such that the orthogonality of
R in (6) is obtained for any set of parameters, then robust
numerical performance is obtained over the entire tuning
range of the filter.

One such filter structure with this property is the nor-
malized lattice filter {7}, sketched in Fig. 1. In effect, with
the delay elements removed, the filter is seen to be an in-
terconnection of Givens rotations. Hence for any set of
{0 }M_, parameters, the corresponding system matrix R
of (6) is orthogonal.

The synthesis procedure relates to the two multiplier
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lattice form (7] by identifying

sin by, = km, m=12,...,M, (9)
where k,, is the reflection coefficient of the m?” lattice stage.
The well known stability condition {&s| < 1 translates to
cos @y # 0, and in particular, stability is trivial to ensure in
a tunable environment. It can be shown that cos 8,, can be
replaced by — cos @, (or equivalently 6, can be replaced
by 7 ~ ), without affecting the overall all-pass trans-
fer function. By convention, however, one usually chooses
cosfm, > 0, or equivalenty, [8,,] < 7/2.

For the normalized lattice filter, the matrix R takes
the form

R=Q;Q: - Qn (10)
where
I
_ —sinfy cos by
Q= cosf sinfy ' (1)
In_:

Upon multiplying the factors, if is found that R takes an
upper Hessenburg form, and upon partitioning R as per (6)
it 1s found that A and c take the forms

a T o z
cos 91 agy z 0
A= 0 cosfy = :
. ) 0
. 0 B z cos Opr
0 e 0 cosfpy_; =z
(124)
and that the diagonal elements of A are given by
__{ —sind; k=1,
Ok = {—sin By sinby k#1. (128)

Following the nomenclature in [8], the system configuration
of (12a) will be called the “observable Hessenburg” form.
Note that the subdiagonal elements of A can never be zero
if the filter is stable.

Property 2.2. Let a given realization of F(z) have the
state space parameters {A,b,c?,d}, and let 3(z) represent
the first-order (all-pass) lowpass-to-lowpass transformation
of (1). The transformed filter F(1/6(z)) admits the state
space parameters {Ap,bp,ch,dp}, given by

Ap={I+aA) ol +A),

bg = (1 — oa® )3T+ aA) ',
cp=(1- oY I+ aA)7Y,
dg = d—ac’(I+aA)"'b.

(14)

Moreover, the Grammian matrices of (7) are invariant un-
der this transformation.



Note that if the original system has an orthogonal sys-
tem matrix, the transformed filter retains this orthogonal-
ity. This transformation, however, does not map a Hes-
senburg system into a Hessenburg system, and hence the
new system matrix does not correspond to a lattice filter.
This suggest that to obtain the system representation corre-
sponding to a lattice filter, one can apply an orthogonal sim-
ilarity transformation to obtain {T*AsT, T*bs,c;T,ds},
such that the new system is in Hessenburg observable form.
The uniqueness of this transformation is established in the
following;:

Property 2.3. Let (A, cg) form an observable pair. Then
there exists a unique orthogonal matrix T and a unique
Hessenburg observable pair (A, c¢) such that

(T*AsT,Tlcs) = (A, c). (15)

This result follows by duality of Proposition 3.2 in [8].
Thus if (A, ¢) is a Hessenburg observable pair which satis-
fies (8b), the pair describes a lattice filter.

IIT Algorithm Description

We discuss here the practical considerations to imple-
ment the frequency transformation described above.

The procedure begins by constructing the Hessenburg
system matrix R of (6), using for example the “factored”
description of (10). The final dimensions of R are M+1 x
M+1, where M is the order of the allpass filter to be trans-
formed.

The next step is to obtain the transformed system de-
scription of (14). Note that the matrix (I+aA)~! appears
in all the expressions. As a practical point, the matrix
I+ aA ceases to be invertible if and only if 1/ = A(A),
where A(A) is any eigenvalue of A. By construction, the
given allpass filter is stable provided 8, # 7/2 for any m,
which then implies |A(A)] < 1. Thus, with |a} < 1, the
condition 1/ = A(A) becomes impossible, and (I+aA)™?
exists. Rather than try to invert I+ «A, an LU decom-
position is performed [9], where L is lower triangular and
U is upper triangular. Note from (12a) that A is in upper
Hessenburg form, and hence so is I+ «A. The Gaussian
elimination routine used in the LU decomposition_becomes
rather simple in this case, since only one comparison is
needed in the partial pivoting strategy at each stage of the
reduction. Moerover, the roundoff error growth factor is
bounded above by M [9], where M is the dimension of the
problem.

The solution of equations (14) begins with solving

(I+aA)x =h. (16)
With I + oA = LU, the solution x is obtained from of
Ux =L~ 'b, (17
.using back substitution. Next, dg is formed according to
dp = d — ac’x. (18)

Note from (12a) that ¢ has only one nonzero element; ac-
cordingly the inner product ¢'x in (18) requires only one
multiplication. Next, bg in (14) is obtained from
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bs = (1 - a?)/?x. (19)

The matrix Ag in (14) is obtained as the solution of
(I+aA)A, = ol +A, (20)

which may be obtained from M backsolves of the form (17),
upon substituting the appropriate column of oI+ A as the
right-hand side vector.

The term cg in (14) is not the solution of a column-
oriented problem as described above; rather cg may be ob-
tained by solving

x'(I+coA)=c". (21)
Note that this is a row-oriented, rather than a column-
oriented, problem. That is, substituting I + cA = LU
in (21), the solution x* is obtained by solving the upper

triangular system
(x*L)U = c". (22)

With U upper triangular, and with ¢ in the form of (12a),
we find that c is a left eigenvector of U with eigenvalue
[Ulp,p [the (M, M)-th element of U]. Hence no explicit
back solve is necessary; one has

x'L = c'/[Ula,nr - (23)

The solution x is obtained using the information of L, and
cp is obtained as ¢ = (1 — a?)!/2x.

The final step is then to transform the system to upper

Hessenburg form using a sequence of Householder transfor-
mations. The first step becomes

[T’ 0] [A,, prT O]Z[T’AﬁT Ttbﬂ]_

ot 1 CE, dﬁ 0 1 CET dﬁ
(24)
The matrix T is chosen as
2
T=1- Euut, (25(1)
with
u = cp +sgn(ym) llesllzenm (250)

where M is the dimension of ¢g, yar is its last element,
and eps is the unit vector with a “1” in the last position.
This results in ¢;U = —sgn(yn) |leslf e!,, thereby intro-
ducing the desired zeros. The next step of the reduction
then introduces M —2 zeros in the second-to-last row, and
80 on.

Finally, having effected the Householder transforma-
tion, the resulting upper Hessenburg system matrix may
be “factored” into the new rotation parameters {6} by
clever inspection of the matrices of (12). One sees that the
subdiagonal elements of A contain cos 8,,, which give infor-
mation about the magnitudes of the rotation parameters,
but not their signs, since cos f,, = cos(—8,,). The diagonal
elements can then be used to infer the signs of the rotation
parameters. For example, refering to (12b) one sees that
the (1,1) element of A is —sin#y, from which the sign of
f, is easily determined. Since §; and cos @ are known, the
sign of §2 can be inferred from the sign of the (2, 2) element
of A, and the procedure continues along the diagonal to
obtain the sign of the {f,,} parameters in succession. Note
that successive division of the diagonal elements to obtain
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sinf,, is ill-advised, since one might by chance encounter
sin 0,, ~ 0, which would result in poor conditioning in the
next division operation.

IV  Simulation Example

We illustrate the above freugency transformation ap-
plied to a ninth order elliptic lowpass filter F(z) decom-
posed as

F(z) = §A1(2) + A2(2)); (28)

where A (z) is a fifth order allpass filter, Ay(z) fourth order,
corresponding to the rotation parameters listed here:

Aq(z) Aq(z)
61 —0.359090 —0.501757
2 1.336602 1.022503
63 —0.637535 | —0.566953
b4 0.675644 0.280158
fs —0.262467 S

A FORTRAN subroutine was written to implement the
above described algorithm. The new rotation parameters
corresponding to a different cutoff frequency are obtained
using two subroutine calls, one for each allpass filter. Fig-
ure 2 shows some frequency response examples obtained for
various choices of the parameter a.

V Concluding Remarks

This paper has described a program to compute first
order frequency transformations on a class of recursive digi-
tal filters. By considering filters which may be decomposed
as the sum of two allpass functions, the tunability problem
reduces to implementing two tunable allpass filters. This
has important practical utility, since allpass filter structures
are known for which the roundoff noise is very low indepen-
dent of the pole locations. Moreover, the coefficient sensi-
tivities are known to be very low in this class of filters [2],
[3].

This report used the normalized lattice filter as the
allpass filter model, for the which system matrix is orthog-
onal and assumes an upper Hessenburg form. Thus, upon
applying the desired frequency transformation to the state
space system description, the resulting description is con-
verted back to Hessenburg form using a sequence of (rear-
ranged) Householder transformations. The overall program
may be understood as transforming an orthogonal matrix
to an orthogonal matrix, which results in excellent numer-
ical stability of the algorithm.
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Figure 2: Example frequency responses.
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