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RESUME

Cet article étude la structure de ambi-
guité de systémes de localization passive en mil-
lieux avec trajects multiples. Une définition basée
en notions géometriques et de la Théorie de
I'Information est appliquée a4 I’analyse de deux sit-
uations dont 1’étude n’était pas possible avec les
definitions antérieures. Dans la premiére, I’énergie
du signal requ depend de la localization de la
source. On conclue que cette variabilité permet
une réduction de ’ambiguité. Dans la seconde, le
spectre de la source n'est pas connu, ce qui im-
plique une dégradation de la performance globale
du systéme. Finalement, on étude ’'importance,
du point de vue de ’ambiguité, d’une modélization
compléte des observations.

1 Introduction

Tracking and location systems are being used in increas-
ingly complex environments, such as multiple radiating
sources and multipath channels. However, the fast de-
velopment of signal processing algorithms for these non-
trivial situations has not been followed by a corresponding
development of global analysis tools. The classical ambi-
guity function of Woodward [10] implicitly admits a set
of restrictive assumptions. Among others: exact knowl-
edge of the statistical description of the incoming data for
each possible value of the source location and single source
scenarios. Generalizations of Woodward’s ambiguity have
been presented [9, 3] that allow for the consideration of
more general channel models and stochastic narrowband
source signals. However, the two fundamental limitations
referred to above are still present.

In (8, 7, 5], we presented a definition of ambiguity that
does not suffer from the limitations previously mentioned,
and thus can be used to analyze the global performance
of passive location systems, with an arbitrary number of
sources present. The new definition recovers Woodward’s
when the active narrowband RADAR problem is consid-
ered.

In this paper, we consider the effect of dropping two
hypotheses underlying Woodward’s definition: (i) knowl-
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We study the ambiguity structure of pas-
sive location systems in multipath environments.
A definition based on geometric/Information The-
oretic concepts is applied to two situations which
study was not possible with previously existing
global analysis tools. In the first, the source spec-
trum is knwon, but the received signal compo-
nent’s energy depends on the source location. We
see that this additional variablity of the data re-
sults in a decrease of the model’s ambiguity. In
the second, the source spectrum is not known,
resulting in a degradation of the global perfor-
mance. Finally, we conclude about the improve-
ment on global performance that a complete mod-
eling (both temporal and spatial, as oposed to
purely spatial) of the observed wavefield can pro-
vide.

edge of the source spectrum; (%} constant received power.
We will show how the ambiguity structure deviates from
the one predicted by the classical definition. Dropping
hypothesis (i) is essential when studying passive systems;
condition (#i) is incompatible with modeling of the mul-
tipath structure of the underwater acoustic channel. We
apply the definition presented in [8, 7], and show that it
captures effectively the significant features of each situa-
tion considered.

The paper is organized as follows. We begin with a brief
presentation of the new ambiguity function, in section 2.
Section 3 is devoted to the study of the impact of vatiable
received signal power. We consider a zero-mean stationary
Gaussian source signal, with known spectrum, propagat-
ing through a multipath channel. A numerical example
illustrates the behaviour of the new definition. In sec-
tion 4 we consider that the source spectrum is not known
at the receiver. An analytic expression for the ambigu-
ity function is presented and interpreted. The ambiguity
function clearly reflects the degradation in performance
due to uncertainty about the source spectum. Finally, in
section 5, the impact of modeling the multipath structure
in the global performance is analysed. It is shown that
the information coded in the temporal alignement of the
received replicas can improve the discrimination power of
the model.



294

2 Ambiguity

In this section we briefly present the definition of the ambi-
guity function proposed in [8, 7, 5]. Our definition of am-
biguity is motivated by a geometric interpretation of Max-
imum Likelihood (ML) estimates for exponential families.
It is based on the Kullback directed divergence between
probability densities

102, {1n 2} M)

where p, ¢ are probability density functions (pdf’s) and
E, {-} = [ -p(z)dz. For exponential families, the following
relation between the ML estimate § of the unknown deter-

ministic parameter § and the Kullback directed divergence
holds:

6 = arg minI(p(r) : p(r|f)) (2)
where p(r) is determined from the observations r, for de-
tails see [2, 1]. The previous relation singles out the Kull-
back directed divergence as the basic discriminating mea-
sure in deciding the value of #. Pairs of parameters 6y, 8
with 8¢ # 8 that yield a small value of I(p(r|6s) : p(r]6))
are likely to yield erronous estimates § = § when 0y is the
true value of the parameter. Based on these arguments,
we proposed [8, 7] the following definition of ambiguity
function:

1(00 : 0)
Isup(fo)

where Isyp(fg) is an upper bound on the Kullback di-
vergence between p(r|6y) and the pdf conditioned on any
other value of §. To simplify the notation, we use I(f : 6)
for I(p(r{6o) : p(r}#)). The definition above is suitable
when there are no other unknown parameters besides 8.
It can be shown [5] that it yields the classical definition of
ambiguity function when the active narrowband RADAR
problem is considered. In passive systems, the source spec-
trum is not known, implying that the condifitonal pdf
p(r|6) is not exactly known. In this case, to each value
of # corresponds a family of pdf’s, allowing for all the pos-

sible source spectral characteristics. Denote this family
(for fixed ) by G%, and define

A(8o,8) = 1 — (3)

100 : 0)y, £ min 1(p(60,%0) - f) (4)

and where 7o indicates the true source spectral parame-
ters. The previous definiton of ambiguity, (3), is extended
to this case using this minimum value of the Kullback di-
vergence:

é 1— 1(60 :9)70
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A(8,6) (5)

Isup(fo)ys

As in the previous case, I~5Up(90 )yo denotes an upper
bound, in this case on the minimum divergence I.

For zero mean stationary Gaussian signals, .A(f, #) can
be written in terms of the spectral density of the observa-
tions. Let Ry(w) denote the spectral density of the obser-
vations, parameterized by the source location (). Then,

under mild conditions, [4, 8]
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where I(z : y) is defined by

Tw:a) = 5 [ IlRWR,MN] - K

RN
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and K is the dimension of the observation vector. The
previous expression identifies the Itakura-Saito distortion
measure with the asymptotic value of the directed diver-
gence. '

3 Known Socurce Spectrum

We consider now the application of the previous definitions
to the study of the ambiguity in locating a source of known
power spectrum in a multipath channel. The observation’s
power spectrum is

Ry(w) = S(w)(w)he (w)hs(w)T + o (w)Ik

where we assumed that the observation noise is spatially
incoherent, with known power density o%(w). In the pre-
vious equation, S(w)(/omega) is the source spectral den-
sity and hy(w) is the resultant vector, that describes the
superposition of all the steering vectors corresponding to
each replica received. Applying definiton 3, the following
expression is obtained, [§]

Alo,) = 1‘@7{(‘0—) / [SNR(w)IlAq ()]
SNR(w)® ,
_ 1+SNR(w)||he(w)“2lhgo(w)Hha(w)l
SNR(w)
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1 4+ SNR(w)]|hs(w)]]? ] dw.
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where SNR(w) denotes the source signal to noise ratio,

and C is an upper bound on the value of ||hg(w)]|2.

To get insight into the meaning of the previous expres-
sion, we analyze its limit for large values of SNR(w) for flat
source and noise spectra. A few lines of calculus lead to

lim SNRO——»ooA(go’g) =14

A(by,0)®
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where A(fo, 9)(C) denotes the unnormalized equivalent of
the classical ambiguity function for each processing fre-
quency:

A(80,6)? 2 |hgo(w) (W) (7)



This expression shows that for sufficiently high signal to
noise ratio the ambiguity structure is dependent only on
the propagation/observation operators, and not on the
source spectrum. Note also that the analogue of the classi-
cal ambiguity is weighted by the effectively received signal
power, through the norm of the resultant vector at the
true source position, hg,(w).

Below, (Fig. 2), we show a plot of the ambiguity func-
tion for the simple configuration illustrated in Fig. 1. The
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Figure 1: Geometry for Fig. 2.

sound velocity is constant, and equal to 1500 m/s. The
10 element receiving umform linear array is vertical, with
inter-sensor spacing 0.1 m. The source and noise spectra
are constant over the bandwidth [100,500].

Figure 2: Density plot of the ambiguity.

While the ambiguity surface shows the existence of side-
lobes of considerable height, oriented in an almost radial
fashion, due to the lack of resolving power of the array for
the frequencies of analysis, the surface predicted by the
classical ambiguity is almost completely flat.

4 Unknown Source Spectrum

In this section we consider the same scenario as in the
previous section, now for a source radiating a signal of
unknown spectrum. In this case the probability density of
the received data is dependent on the (unknown) source
spectrum, and the general definition (5) must be used,

£Y90
resulting in [8],
SNR(w) ()
- ]
'A(eoa 0)50 fSNR(w)de(go’ ) (8)
_ 1 14 SNR(w) A6, 0)%) )
J SNR(w)dw 1+ SNR(w)

where SNR(w) is the ratio of received signal to noise power,

SNR(w) = ) (9)

and A(Bo,ﬂ)gco) is the analogue of the classical ambiguity
function, i.e., the square of the cosine of the angle between
the resultant vectors for the two values of source location.

[oo(w)™ ho(w)|?
[[Re(W)I*l1hos (w)II?°

Note that the presence of the logarithmic term sets a lower
bound on the possible values of A(6y, 8):

A0, 0)$) 2

A(bo,0) > W/SNR(u)ln(l + SNR(w))dw.

This bound (see the definition of SNR(w)) depends on the
effectively received energy.

5 Temporal Modeling

In this section we study the impact of a complete spa-
tial/temporal modeling of the received wavefield, when
compared to pure spatial modeling. We consider the pas-
sive situation, where the source spectrum is not known.

For the complete model, the ambiguity function is given
by the eq. (8) presented in the previous section, that we
denote here by A(fg,8)?/**™?,

Consider the following decomposition of the resultant
vector:

hy(w) = D(G)b(ﬂ)

where D(9) is the matrix of direction vectors for each wave-
front incoming, and b(#) is a complex vector that describes
the relative delays and attenuations of the incoming paths
at a reference sensor.

The matrix D(6) describes the spatial structure of the
received data, and b(f) its temporal alignement. Pure spa-
tial models use only the dependency of D(6) on 8, consider-
ing b as an unknown deterministic vector. The simultane-
ous uncertainty about the source spectrum and the vector
b imply that only the product \/S(w)b can be determined.
Applying definition (5) yields [8]

A(6o,0) ToRA [0
1 1+ SNR(w).A(6o, 0)2
TSNR@) T SNR(w) ] dw
where now
|T(0) D(80)bo]”

d) &
Aoy’ = 5@ )bol?
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denotes the cosine of the angle between the received resul-
tant vector hg(w) and its projection on the space generated
by the columns of D(6), H(8), and SNR(w) has the same
definition as in the previous section, (9).

Comparing the two expressions, we can conclude imme-
diately that

A(60,8)D > A(Bo,0)?
. A(65,0) > A(8o,0)"P/temP

i.e, the ambiguity surface for the complete model is below
the ambiguity surface for the spatial model.

Consider that the receiving array is able to perfectly
distinguish the paths incoming from each source alone,

D(6) D(8) ~ D(6o)" D(6o) ~ KI

but that there are pairs of paths incoming from the two
sources that fall inside the resolution limits of the array,
such that for some pair of sequences ig, i (see Fig. 3)

D(60)" D(8) 2 K'Y " ei, 1508
k

where e; denotes the i-th Euclidean vector. With these

—

Figure 3: Geometry of arrivals.

assumptions, the ambiguity function can be written as [§]

. SNR(w)" 73
g asp/t mp f (v)
Allo,0) [ SNR(w) Ao, 6)
1 /ln 1+ SNR(w)"
T SNR(w) 1+ SNR(w) "
where
SNR(w)* 2 pSNR(w)
p 2 llIbIE
[1Bo2 1512
Ao, 0y & D0l
[lbol|2|/2[)?

and the r-dimensional vectors by, b are

Bo = [Bioa) ++* bio(r)]
b= [biry -+ bi()]

We point out that A(f,, 0)(") is the ambiguity function for
a virtual array which resultant vector (b) is defined by the
temporal delays between the unresolved received paths.
Previously, the same notion of virtual array has been used

to explain the improvement in local performance (Cramér-
Rao bound) when comparing complete and purely spatial
modeling of the channel, see [6]. Finally, note that in
the situation of very poor spatial resolution, the spatial
model is completely ambiguous, and the ambiguity of the
complete model is determined by the geometry of the vir-
tual array. In this situation, the temporal modeling of the
channel can greatly improve the global ambiguity picture.
When there is almost perfect spatial resolution, the spa-
tial model displays already a very low ambiguity, leaving
no room for improvements, when the additional informa-
tion on b is considered.
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