TREIZIEME COLLOQUE GRETSI - JUAN-LES-PINS DU 16 AU 20 SEPTEMBRE 1991

UNIVERSAL DATA COMPRESSION
WITH GENERALIZED ALGORITHM CONTEXT

G. Furlan - J. Rissanen

IBM Research Division
Almaden Research Center
650 HHarry Road
San Jose, CA 95120

Résumé

L'algorithme du Contexte pour la modélisation
universelle de source, introduit par J. Rissanen [1] dans le
cas binaire, est généralisé au cas non-binaire, ce qui permet
son application pour la modélisation de différents processus
aléatoires comme ceux rencontrés en compression d’image,
avec ou sans perte d'information, dans les systémes
chaotiques, et, plus généralement, partout ou une
prédiction est nécessaire. Cette généralisation comprend
deux améliorations majeures: le contrdle de la taille du
modéle et une modification des régles de sélection du
contexte afin d‘accroitre les performances et la vitesse
d’exécution, qui sont combinées lors de cette
implémentation. En simples termes, on peut décrire
V'algorithme du Contexte comme essayant simultanément
tous les modéles appropriés, disons de type Markovien, et
ne retenant que le plus performant pour la prédiction de
chaque symbole.

1. Introduction

The first universal data compression algorithms were
capable of encoding strings, generated by independent in-
formation sources, with asymptotically optimum mean per
symbol length without a priori given source probabilities.
Clearly, such algorithms estimate either directly or indi-
rectly the statistics with increasing accuracy while the string
is being encoded. The same approach can be applied, at
least in principle, to all stationary sources by means of
gathering the statistics of longer and longer segments.
However, in practice there is an obvious difficulty of ex-
ponentially growing number of items to be stored, and new
ideas are needed to do the job in a practically meaningful
manner. One of the most powerful universal algorithms
published to date is due to Ziv and Lempel [4]. Their ele-
gant algorithm achieves asymptotically optimum com-
pression for strings generated by any stationary ergodic
source, and it does the job in many cases in a quite practi-
cable manner.

At the same, there is a major problem with an incre-
mental block parsing algorithm such a Ziv-Lempel algo-
rithm, and with all block models for that matter, namely,
that they capture random dependencies between symbols
that fall within one and the same block. Also, for the large

Abstract

A universal modeling algorithm Context, introduced in
Rissanen [1] for binary strings, is generalized for nonbi-
nary strings, which makes it applicable to modeling many
types of random processes, such as encountered in image
compression, both lossless and lossy, chaotic systems, and
generally speaking whenever prediction is needed. This
generalization includes two major improvements, the con-
trol of the size of the required tree and a modification of the
original context selection rule to improve accuracy and
speed, which in the current implementation are combined.
In broad terms, one can view the algorithm as running si-
multaneously all the relevant models, say of Markov type,
and, for the prediction of each symbol, choosing the most
appropriate of them.

class of strings, where symbols interact in two or higher
dimensional neighborhoods, any technique producing one
dimensional parsed segments is necessarily ineffective and .
often impossible to utilize in a practicable manner. In order
to obtain more powerful models, the requirement that the
collected segments only partition the string must be relaxed.
In the currently described solution this is done so that each
symbol’s occurrence counts, or more general statistical
properties, are collected conditional to other nearby sym-
bols, defining the symbol’s “context’. As shown in [5],
such conditioning allows for a more efficient way to take
advantage of statistical regularities. Indeed, even the seg-
ments found by the incremental parsing algorithm define
contexts for each of their constituent symbols, and such an
interpretation offers a uniform and more fundamental ex-
planation of the modeling efficiency of block models. In
broad terms, the idea behind the algorithm Context is to
gather statistics of each symbol in ever growing contexts as
the string is being processed, while shifting through the
contexts to find the optimal one. One can view the algo-
rithm as running simultaneously all the relevant Markov
models, and, for the prediction of each symbol of the string,
choosing the most appropriate of them.

In Section II we introduce algorithm Context in its most
advanced form, which combines a stochastic complexity,

878

[7], based rule for optimal state space selection with a
control of the tree size. Section III gives some practical re-
sults when the Context algorithm is combined with an
arithmetic coder, [5], [6]. Finally, Section IV includes a
summary.

II. New implementation of algorithm Context.

Algorithm Context is an efficient statistics gathering and -

storing device. It collects in a tree all the numbers of times
each symbol occurs in various “contexts” or, synon-
ymously, “states”. A “context” is a set of past symbols
which are thought to have an influence on the current
symbol occurrence. A simple example is a Markovian
model, where a symbol’s context is a certain number of
immediately preceding symbols. Such a context tree is ca-
pable of representing all the contexts of a certain agreed
type that actually occur in a string or an image, and it
provides about the most powerful “universal” model we can
think of. To understand how this is accomplished, one
must understand the idea of “Stochastic Complexity” [7]
and how it is used to determine the optimal context for
each symbol. Stochastic Complexity generalizes Shannon'’s
information of data in that it is defined as the negative
logarithm of the greatest probability we can construct for
the considered data string within a broad class of distrib-
utions, rather than just one given distribution as in
Shannon'’s case. This amounts to adding to Shannon’s in-
formation a term reflecting the complexity of the task re-
quired to estimate, one way or another, the required
distribution. The principle of searching for a model class
which permits the shortest total code length for the data;
ie, the stochastic complexity, is called the Minimum De-
scription Length (MDL) principle. With this principle one
can select in the context tree for each new symbol that node
as the optimal context which gives the smallest Stochastic
Complexity for the past symbol occurrences at this node.

To encode a symbol at its optimal node (a state), a
multiplication-free Arithmetic Coder, [6], may be used,
which does the encoding with help of the statistics of the
symbol provided by its optimal context. As well known, in
an Arithmetic Coder each symbol’s “codeword”, as it were,
is instantaneously redesigned, so that a near-optimal code
length results whether or not the string is modeled as a
stationary or a non stationary source. By contrast, rede-
signing a traditional Huffman code tree for each symbol
with its changing statistics would be hopelessly complex
and out of question. Even in its multiplication-free version
the efficiency of an Arithmetic Coder is 97-99 percent or
better. For the reader unfamiliar with arithmetic coding,
we mention that an Arithmetic Coder constructs the code
string as a cumulative probability of the string that precedes
the symbol to be encoded in the lexical order of the strings.
When calculating this cumulative probability, the code uses
a certain approximation of the probability of the string de-
fined by the model, the Context Algorithm in this case.
This approximation satisfies all the properties of an infor-
mation source, which makes the decoding possible.

Before giving the new implementation of Algorithm
Context, we need a few notations. We consider a growing
string x(¢) = xi, ..., X, of symbols taken from the alphabet

A = {a, ..., a;}. The computations are done adaptively for
each symbol x, in the stnng. Let z = x,_z,
% = X,_p, .. denote a renumbering of the past symbols
in the string defined by a permutation

l<fk)y<t—1, k=1,.,t—1. This reordering is
based upon our belief in that z has the greatest influence
on the symbol x,, the next greatest being 2, and so on. For
example, for a string of letters, we may take the function f
as the identity function so that zy = x,_,,2 = x,.,and so
on. In the case where the symbols represent the pixels of
an image, an appropriate choice is x,.; = x{ij — 1),
Xe_a = x(i— 1)), x,_3 = x(i— 1j— 1) and so on, where i
and j represent the line and the column indices of
x; = x(i), respectively.

In these notations the algorithm, which recursively collects
in a tree essentially all the occurrence counts of the
k + 1-tuples of the values x,_ g, ... , X, - q1y, X that occur n
the string, is as follows:

Algorithm Context

1. Initialization:

Start with the tree consisting of a single root node,
which has a counter for each of the symbols in the al-
phabet, all set to 0. Read the first symbol x;, encode
this symbol as described in step 3) and increment the

"count of this symbol by 1. Denote the resulting, still

1-node tree by T(1).

2. Choice of the coding node (optimal context):

Each node of the tree has a list of the d symbol counts

together with a Relative Efficiency Counter, called
REC, whose sign indicates its efficiency relative to its
father node for encoding a symbol, provided that a
father node exists; we take the root to have a negative
REC. Recursively, let T(t — 1) be constructed after
t—1 first symbols have been processed. Cimb the
tree, starting at the root according to the substring
21, 23, .. into the past. Let 2() = z,, 2, ..., z be such
a path in the tree. This path defines a node which is a
possible context for the “next” symbol x.. Define the
unique encoding node as the first node z(i) with e
negative value for its REC which precedes a node
z(i + 1) with a nonnegative REC, if one exists.

3. Encoding:

Use the multiplication-free arithmetic coder to encode
the symbol x,. For that, feed the arithmetic coder witt
the distribution formed by the d symbol counts at the
encoding node. :

4. Update of the tree: :
Climb the tree, starting at the root, according to t
substring 2, , Then, for each node z(j) ==z, ..., 2
visited do the following:

e Compute the ideal code length I(x.|z(j)) of th
symbol x; at the considered node z(j)

I(x,|2()) = —logy Pesixy),

where P..(x;) denotes the probability of symbcl
x, as defined by the counts at the considered node
using a suitable estimator. As an example, we can
choose the classical Markovian estimator defined
as:

n(x,| 2(7)

Posixel 2()) = ECOr if n(x|z()) # 0;

and
1
(n(z()) + 1)Y(d— 9)

if nlx]z()) = C;

where n(x.|z(j)) denotes the count of symbol x,
at this node and n(z(y)) is the sum of all such
symbol counts while g is the number of symbols
which have not yet occured at node z(j)

e - Except for the root, add to the REC at the node
z(j) the difference I(x.|z()) — I(x.|2(—1)). If
the new value of the REC is greater than a
threshold RECMAX, then set REC to
RECMAX. Similarly, if REC < RECMIN, thea
set REC to RECMIN.

¢ Increment by 1 the count corresponding to the
symbol x,.

Pogi(x,] Z(f)) ‘=

5. Growing the tree:

If the count of the symbol x; at the last node visited
after update is greater than 1, and the REC of the node
is negative, then form a new node with a branch de-
fined by the symbol extending the substring one step
deeper into the past, namely, z, = x,_ am- Set all the
symbol counts at this new node to 0 except the one
corresponding to x, which is set to 1. Initialize the
REC value to RECMIN.

Comments

A crucial task in this algorithm is the choice of the en-
coding nodes. To clarify the thinking imagine that we have
already determined the context tree T(¢ — 1) from the so far
processed string x = xy, ..., x,_;, but have not yet decided
which context to use for encoding of x,; ie, how far into the
past string z(i) = z, ..., z we should look for the context,
which also defines a path from the root of the tree to a
unique node. In order to get guidance we calculate how
well the various nodes on this path would have been able
to compress the past symbol occurrences. To calculate the
per symbol entropy at each node is not the answer, becausa
the deeper we go the smaller the entropy gets, which would

- force us always to select the leaf as the coding node. Rather,
we should somehow include the complexity of the node
distribution in the code length calculation, which is what
was done in [1] and [2]. Rather, here we do the code
length calculation predictively, which automatically in-
cludes the “cost” of the model associated with each node,
as it were. To increase the speed and simplify this process,
we evaluate the predictive code lengths in a relative manner
with help of the cumulative counter called REC [8] at
each node,

879

REC(z2(i)) = REC,_ ((2(d)) + I(x,] 2(d) —'l(xtlz(i— 1)),
i>0,

which allows us to judge the efficiency of the considered
node as compared with its father node. Because it works in
a relative rather than absolute manner (ie, it accumulates
the differences of the code lengths between two adjacent
nodes) there is no need to take into account all the son
nodes in the decision.

When the value of the REC increases, it means that the
node associated with this REC is less efficient than its fa-
ther node. Conversely, when the value decreases, it means
that the node is more efficient than its father node. Hence,
in principle we should test the sign of the derivative of the
REC counter, which however is cumbersome and some-
what unreliable because of the stochastic nature of the code
length differences. Instead we do the job in the indicated
manner using the maximum and the minimum values of
the REC counter. Because the strings require nonstationary
models, the REC counters allow the constructed encoding
nodes to regress and become a non-encoding node. The
use of the REC counters also allows a more selective de-
velopment of the tree and a more efficient usage of the
memory space. In fact, since we permit encoding nodes to
have son nodes, some of which in turn being turned into
encoding nodes, the size and the shape of the tree get care-
fully matched to the information content in the source
string, and the memory space allowed for the tree will be
optimally used. Even when the memory space gets filled
up, some nodes may still be dropped and new ones created
according to the information carried by them. This way a
degree of adaptation in the tree construction is achieved.

II1. Results

An arithmetic coder in connection with a universal
model provided by the Context Algorithm forms currently
the most powerful lossless data compression package we
are aware of. The compression rates are better than those
obtainable with, say, a Ziv-Lempel algorithm, in particular
for short and medium length files. When applied to the
common grey scale test image “Lena” sampled into
256 x 256 pixels, one gets a code length of 5.1 bits/pixel.
This compares favorably with the result in Ho and Gersho
[9], who obtained 5 bits/pixels by applying a DCT on the
same image but sampled at the resolution 512 x 512 which
for the more coarsely sampled image corresponds to a
greater bit rate. Furthermore, for binary image com-
pression, algorithm Context is more efficient than the clas-
sical Q-Coder adapter with some fixed Markov model.

Algorithm Context provides also a new foundation for
lossy coding, which the authors discuss in another paper.
However, it can also be applied to enhance current
quantization algorithms. For example, when applied to
scalar quantized values, it allows a further improvement of
the compression rate by a factor of about 30%, without
any loss of information in the quantized string. In vector
Quantized images, the algorithm Context should not be

880

applied to the pixel components of the quantized vectors
but to the 2-D field of the resulting indices. Then the
compression rate improvement over ordinary VQ is typi-
cally in the range of 25-30 percent. Further, when com-
bined with transform coding, it provides quasi-lossless
coding of images for a bit rate close to 1 bit/pixel with an
average deviation 0.1 bits/pixel for most parts of the image.

IV. Conclusions

In this paper we have presented a new version of the
powerful algorithm Context that allows a real time imple-
mentation for multi-symbol sources. This version allows:
1) an optimal choice of the encoding nodes which no
longer need to satisfy the property that all son nodes are
encoding nodes; 2) linking of the size of the required tree
to the subtree defined by encoding nodes. Combined with
a multiplication free multi-symbol Arithmetic Coder, it re-
presents the most efficient lossless data compression
method we are aware of. Further generalizations of the
algorithm are under development which permit universal
modeling of all time series.

V. Bibliography

[1] J.Rissanen - “A Universal Data Compression System”,
IEEE Trans: Info. Theory, vol IT 29, No 5, September 83.

[2] I.Rissanen - “Complexity of Strings in the Class of
Markov Sources”, IEEE Trans. Info. Theory, vol IT 32,
No 4, July 8é.

3] G.Furdan “Contribution a I'Btude et au
Developpement d’Algorithmes de Traitement du Signal en
Compression de Donnees et d’'Images”, Ph.D Dissertation,
Universite de Nice-Sophia Antipolis, April 90 (unpub-
lished).

[4] J.Ziv, ALempel - “Complexity of Individual Se-
quences via Variable Rate Coding” IEEE Trans. Info.
Theory, vol IT 24, No 5, September 78.

[5] J.Rissanen, G.Langdon - “Universal Modeling and
Coding” IEEE Trans. Info. Theory, vol IT 27, No 1, Jan-

uary 81.

[6] J. Rissanen, K. Mohiuddin - “A multiplication-free
multi-alphabet arithmetic code” - IEEE - Trans. Com., Vol
37, No 2, February 1989.

[7] J. Rissanen - “Stochastic Complexity in Statistical In-
quiry” - World Scientific Publishing Co., Singapore, 1989.

[8] G. Furlan - “An Enhancement to Universal Modeling
Algorithm Context for Real-Time Applications to Image
Compression” - IEEE - Proc. ICASSP 91

[9] Y. S. Ho, A. Gersho - “Classified Transform Coding
of Images Using Vector Quantization” - IEEE - Proc.
ICASSP 89 :

