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RESUME

Nous décrivons un algorithme rapide pour le calcul de la
transformation de Gabor. Cet algorithme, qui a pu étre
développé en adoptant un formalisme de type filtrage, permet
une réduction significative de la complexité du calcul des
coefficients de Gabor. Sa complexité est de l'ordre de celle d'une
transformation de Fourier par bloc plus quelques opérations par
point. On obtient ainsi un nombre d'opérations en O(M) pour
un signal de M points alors que les algorithmes précédents les
plus rapides étaient en O(M.LogM).

1. INTRODUCTION

The pertinence of the Gabor transform is now well known in
signal processing. Indeed, the Gabor transform first supplanted
classical methods such as block Fourier transforms in signals
analysis and is now used in advanced image representation
algorithms such as texture extraction or optical flow
computation [PORA 88} [SUPE 91] [BOVI 91] [DUNN 91]. In
picture coding, the Gabor transform has also been used in
different coding schemes and has proven its performance in such
a context [EBRA 91].

As the Gabor transform belongs to the class of lapped non-
orthogonal transforms, its computational complexity is very
high. Although past work produced a number of fast
algorithms, the computation time of the Gabor transform is

still enormous, especially in the field of image processing and -

coding [ORR91].

In this article we propose a new fast algorithm to
compute the Gabor transform. It is derived from a new
theoretical approach to the problem of expanding a signal into a
lapped non orthogonal modulated set of functions. The
asymptotic complexity of this new algorithm for an M point
signal is in O(M), to be compared to O(M.LogM) for the
previous ones, all based on the Zak transform [GERT 90].
While the gain in terms of computational complexity is
significant, we also show that the structure of this new
algorithm is highly interesting from the perspective of VLSI
implementation.

2. THE GABOR TRANSFORM

The Gabor transform of a signal consists of expanding
this signal into a set of modulated and translated complex
gaussian functions. Consider an M point discrete signal,
organized in N adjacent blocks of T points each. A Gabor
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with the most rapid current method in O(M logM).

expansion basis can be obtained by modulating and translating a
complex Gaussian prototype function g(x) as follows

G, (%) = g(x —nT)WD )
with 0 £ n £ N-1 (translation), 0 < < T-1 (modulation),
and 0 £ x £M-1. Giving (1), a signal S(x) can be expressed as

T-1N-1
S(x)=YY a,,G,,(x) for 0 < x < M-1 @)

@=0n=0
if the set of Gy, signals constitutes an effective basis. The
ag,n coefficients are called the transform coefficients of the
signal. The problem of computing these agy n coefficients is
not easy, because the set of Ggy p signals is not orthogonal and
requires the solution of a system of M equations and M
unknown variables where = N*T. Some iterative solutions exist
(projection, gradient descent method [DAUG 88]) but involve
very considerable CPU time (several CPU hours for a 256*256
image on a SUN SPARC2 workstation).

The all acceptable solutions derive from the auxiliary functions
method introduced by Bastiaans [BAST 80] [BAST 81]. This

-method is based on the introduction of a set of sequences,

I",n, which are dual-biorthogonal to the Gy p functions, so

that (G, , 3 0.0 )= O, -o, 6,,1_,,2 3)
which gives (S;I“a,h,,1 )= z“aw,n(G@,n;l"a,l’,,1 )= Gy, oy ).
a,n

A set of sequences l"m,n is said to be dual- biorthogonal to a
set of functions Gy p if

(Goyn, 3T 0yn) = O -0, O 5).

Q3,02 ’ Oy =@y "R Ry
If such a family I“(,),n exists, an inner product gives simply the

expansion coefficients. Indeed S= Y ag G n
on
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= (S;ra)l M )= Zaw,n (Ga),n 3ra>1 M )= awl a1 (6).
w,n

Bastiaans showned that, in the case of continuous infinite
signals, the Fo),n family associated with the set of functions
Ge,n can be obtained analytically. Extending these results to
the case of discrete finite signals, different authors [WEXL. 90]
[GERT 90] showned that the rm,n family has the same form as
the Gg,n family, i.e they can also be obtained by translating
and modulating an auxiliary window function that we denote
1) 0 Ty, (x)=y(x —nT)W*™" .

The problem is then reduced to the search for the auxiliary
window function y(x). ¥(x) can be obtained from the window

1
'l ®
T.Z(g(x))
where Z is the discrete ZAK transform (DZT) [AUSL 91]

function g(x) by Y(x) =

¥l —-2:‘7:ﬁ
[ZEBV 92] defined by Z,.,, , =D g(p+kT)e ¥ (9).
k=0

One of the fastest algorithms available today is based on the
Zak transform [ORR 91].

3. THE GABOR TRANSFORM AS A
MODULATED FILTER BANK SYSTEM

The originality of our approach is to consider the Gabor
transform as a filtering process. It results in a new and better
theoretical formulation, and a more comprehensive approach to
hardware implementation difficulties. This approach will also
clearly demonstrate the close relation between previously
proposed fast algorithms and uniformly-modulated filter-bank
techniques.

3.1 Filter bank synthesizer

The Classical transform approach describes an image
reconstruction process as the sum of the Gabor elementary
functions weighted by their corresponding Gabor coefficients
(Eq. 2). An extension of finite signals to infinite periodic
signals allows us to introduce the filtering formalism. Let S(x)
be the original signal and G n the elementary expansion

functions. We express the reconstruction formula as follows
+o0  T-1
Sx) =Y, ¥a,,G,,(x) (10).
n=—ce w=0
We now have to transform equation (10) to express the system
as a filter bank. We can do this provided that the Ge,n are
obtained from prototype sequences Gy () by translation of n*T,

G,,(x)=G,o(x—nT), and letting Ay be T sequences,
such as Ag(n) =agn:
400 T-1
S(x)=Y, Y A,(mG,(x—nT) (11).

n=—co =0
We now use T sequences Bgy(m), deduced from Ag by
upsampling by a factor T. We therefore have : Bgy(m)=0 for
m#nT. This allows us to introduce additional null terms into
equation (11), thus making the convolution products and the
equivalent filtering process more apparent : (12)

+o0 Tl T-1
S(x)= 3, ¥ B,(m)G,,(x—m)=Y B,(m)}*G,,
m=—oo =0 0=0

The second index on G is no more useful and Gg,0 will be
denoted G in the following.

3.2 Polyphase decomposition of filter bank
synthetizer

Equation (12) is illustrated through the diagram of figure 1. By
denoting Gg,0 as Gy we hide the translation in the
convolution process. The set of filters Gey(z) is obtained by
modulation of the prototype filter Go(z). More precisely this set
of filters is a uniformly modulated DFT filter-bank

G,(2) = Zanz'" =G, ()= Y aW"7" (13).

n=-—o0 Hn=-—o0
Polyphase decomposition is obtained by substituting new
indices m and k for n, writing n = mT + k, 0 < k < T-1,
me ]—oo, +oo[ and introducing the polyphase components of

+oo
Go(»): E (2) = Z @72 " (see appendix).

m=—oo
Classical identities for multirate systems allows us to transform
the filtering system of Figure 1 into that of Figure 2, which
represents the final structure of the reconstruction process, using
the filtering formalism.
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Figure 1 : filter bank synthesizer structure.
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Figure 2 : polyphase structure
of the filter bank synthesizer.
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3.3 Filter-bank analyser and perfect reconstruction
condition

The structure of the analysis filter bank is deduced from the
synthesizer in a straightforward way. We thus obtain a dual
structure as depicted in figure 3.

3200 =

Lpa,  —T*IDFT

»aT-l.n

Figure 3 : analysis/synthesis system based on filter banks
(IDFT stands for Inverse DFT).

In this sketch, direct and inverse DFT cancel each other out and
can be removed. Due to sub- and up-sampling, the graph is
reduced to T independent branches. The only way to obtain
perfect reconstruction is to reduce each branch to identity or to
the same pure delay expression. Perfect reconstruction
conditions on Eg and T'k can then easily be obtained from the

diagram of Figure 3 : I''(2).E,(2)= % (14).

This set of equations is equivalent to the set of Fourier
equations defining Bastiaans's auxiliary functions (Equation 8).




4. THE FILTER DESIGN PROCEDURE

In this section, the analytical expressions of the analysis and
synthesis filters of the new algorithms performing the Gabor
transform are clearly defined, thus exhibiting the dependencies
between the prototype window function defining the transform
and the filter coefficients. The design of both the synthesis and
analysis filters are then investigated. We first study the
synthesis filters, which can be designed directly from the basis
functions. Second, the analysis filters are designed according to
the perfect reconstruction conditions in addition to the basis
functions.

The case that does not require perfect reconstruction is
also studied. Indeed, this case is interesting when using the
Gabor transform in lossy picture coding systems. We show that
if perfect reconstruction is not required, the analysis filters can
be approximated using filters with lower complexity, without
introducing noticeable degradation in the coding-decoding
system.

4.1. Application to window functions with a
support of length 2T

4.1.1. Synthesis filters

In this case (prototype of length 2T), the overlapping between
two adjacent windows is half a block to the left and half a block
to the right of the block under consideration. Given the
theoretical reasons expressed above, the window functions must
be applied as depicted in Figure 4. We recall that the
polynomials Ex which determine the synthesis filters are
expressed as follows:

==l oan
m=-ree

Ex()= X amT+k?

me=~—oo

withk e [0, T-1] (15).

Figure 4 : Application
of the window function
to a blockof the signal

) in the 2T case.

=
In the 2T case considered, the degree of these polynomials is
one. Indeed, when the support of the basis functions is limited
to two blocks, the parameter "m" belongs to [0,1].Thus we

m=1
have E; (2) = ZamT+kz"" with k € [0, T-1]
m=0
= Ek(Z) = ak + aT+kz—l With k [S3 [0, T"'].] (16).

The synthesis filters are very easy to implement, because they
can be built with finite impulse response filters of length two,
whatever the dimension of the blocks processed (Cf Figure 5).
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Figure 5 : example of the architecture of the synthesis filters.

4.1.2. Analysis filters

As shown above, the computation of the analysis filters is made
by inverting the synthesis filters to obtain a perfect
reconstruction (Equation 14). We then obtain from (14) :

1 .
T = withk e [0, T-1] (17).
ak

We now have the expression of a recursive filter, whose
stability is dependent on its unique pole. Two cases occur : the
filter is stable and we can very simply deduce its
implementation; the filter is unstable and the filtering
computation has to be modified.

If the modulus of the pole is less than one, which is expressed
as ap.p / ap <1, the filter is stable and the use of Laurent's

series in equation (17) leads to :

n
n=oo
L« 2(—91-*1"-] " (18).
Txa, 2\ &

It is now possible to build a generic structure (Figure 6)
corresponding to this expression. Figure 7 describes the
structure of the analysis filter bank.

We do not investigate the case for which the modulus of the
pole is equal to one. Justification is in the fact that we have
taken care not to apply the basis functions centered on the
sampling grid, thus avoiding the apparition of a zero in the
coefficients of the Zak transform of the window (see figure 4).
This condition is equivalent to having a pole of modulus equal
to one in our formalism.

=>T(2)=

TXak 1+

Fk(z) =

Figure 6: structure
of the elementary
first order recursive

filter, Iecy.
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Figure 7 : structure of the analysis filter bank when the
window functions have a limited support of two blocks.
If now ar.y / ap > 1, the filter is unstable and we can rewrite

equation (17) as follows :

T'r(z)=

- with k e [0, T-1]
Txarikz ~ 1+

z
ar+k

h=+4o00 n
Fk(z)=—-1——x 2 (_ ar )zn

-1
TXarirz = ar+k
= T+k n=0 19).

— -n
1 =0 _
= ———-—_—-l— X 2 (— % ) Z n
Txarixz n=—co\ 9T+k

We then obtain an anti-causal filter as its computation needs the
signal to be reversed. The computation is still the same but the
signal has to be exploited in the reverse order. When processing
in real time, this implies storing the signal before treatment,
thus increasing the memory capacity requirements.
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4.2 Non perfect reconstruction analysis filter bank

It is of note that if a perfect reconstruction is not required, these
analysis recursive filters can be approximated by finite impulse
response filters resulting in a very simple structure, with no
extra signal storage requirements. Simulations on images
showned that this approximation of the filter responses using
very few coefficients does not introduce any noticeable
degradation while significantly decreasing the structure
complexity. This is due to the rapid decrease in the filters
responses. Thus, even if the filters are unstable, it is possible to
implement them with a finite impulse-response filter structure
avoiding the need of processing the signal in reverse order. Extra
memory requirements are hence no longer needed. This
modification is acceptable only if the trade-off between a) the
complexity of the equivalent FIR filter (number of multipliers)
and b) the complexity of the one pole recursive filter plus its
extra memory used to reverse the signal, leads to a significant
gain.

5. COMPARISON OF GABOR ALGORITHM
COMPLEXITY

The discrete signal is taken to be of length M, organized in N
blocks of T points each (M=NT). We still assume that the

computational complexity of a T point DFT is %T. Logy (T)

operations. Note that the algorithm proposed here is the only
one whose the complexity per point is not dependent on the
length of the original signal. Its complexity per point is only of

%T.Logz(T)+3 operations. Indeed, the complexities of

previous algorithms [ORR 92] to process one point are directly
related to M, the length of the original signal, or to N the
number of blocks in this signal. Then, the whole complexity of
the new algorithm proposed is only in O(M), which is far more
efficient than the former ones.

CONCLUSION

A fast algorithm to compute the Gabor transform has been
presented. Thus the computational complexity of this transform
is no longer an obstacle to further investigations into its
application to signal processing. The generic architectures
defined above, which exhibit the inherent parallelism of the
algorithm can now be exploited by efficient implementation on
MIMD type or custom type parallel computers.

This article develops an approach, which is the starting point of
the design process of new transforms taking into account the
functional performances as well as the ability to be efficiently
implemented on parallel computers. Indeed, this approach
clearly exhibits the interactions between the algorithm, related
to the functional requirement of the transform, and the
architecture, strongly related to the ability to exploit a pre-fixed
target hardware or silicon medium. In particular, the case where
perfect reconstruction is not required can be deeply investigated
to perfectly match a specific application in terms of
performances and implementation costs.

Appendix : polyphase decomposition.

In this particular case (expansion of a signal on a Gabor basis)
the filters Gy(z) are obtained by modulating the prototype filter
Go(z) by complex exponential functions. Thus, we obtain a
uniformly DFT modulated filter-bank :

n=—oo n=—oo

Assuming n=mT+k with ke[0,T-1], me ]~oo,+oo]

+oc0
and Ep(2)= ) amrexz "

we get
m:—QO
T-1 +oo
Ga) (z) - 2 Z amT+kW—(mT+k)a)z—mT—k
k=0 m=—co
T-1 +o0 T-1
= ZW_sz_k ZamT+kZ—mT - Zw—sz—kEk(Z—T)
k=0 m=-oco k=0

The output of the filter bank can be expressed as the sum of the
outputs of each filter :
T-1 T-1 T-1 k X T
2. Bu(2)Gp ()= 3, Bp(2) ZW P2 E(z™)
w=0 w=0 k=0

T-1 T-1
=Yy z_kEk(z_T)[ ZW“kaw(z))
k=0 =0

An IDFT appears by permuting the indices ® and k. Using the
classical identities for multirate systems, we obtain the
synthesis filter bank of Figure 2.
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