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RESUME

Le but de cet article est de proposer un EEG systéme de
compression pour les données électro-encéphalographiques avec
une perte des informations controllée. Cette technique ne permet
pas une reconstruction parfaite de la forme donde du signal
original mais elle produit un bon fonctionnement en termes de
bit-rate et en plus elle n'a besoin que de peu de calculs.Le systeme
de compression se base sur la transformation des wavelet packets,
qui a eté réalisée par des bancs de filtres d'analyse. On a activé un
algorithme pour ranger la distorsion dans chaque bande pour
réduire l'entropie totale a la sortie du systéme de synthése. On a
employé UTQ quantizers pour quantifier les subband cocfficients.
Les niveaux de reconstruction ont été projetés pour une distorsion
minimum puisque on sait que la distribution des coefficients est
Laplacienne.

1. Introduction

EEG digital recording allows data storage on op-
tical or magnetic media with consequent saving of
physical space in comparison with usual paper record-
ing. This is however relatively expensive if row data
are stored directly. Some attempt to reduce or com-
press the amount of data before storage is therefore
desirable. In this paper we propose a compression sys-
tem with a controlled loss of information. Such a tech-
nique does not allow a perfect reconstruction of the
original waveform signal but produces good perform-
ances in bit-rate terms and it has also a low computa-
tional cost. The compression system is based on the
wavelet transform, a well known tool in data compres-
sion and EEG analysis.

The wavelet packets decomposition has been
chosen because of its suitability for EEG analysis, in
fact such a transform decomposes every frame in a set
of subbands having the same number of samples, and
. with the same spectral width. The wavelet coefficients
are obtained with recursive filtering operations, similar
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to subband coding schemes using QMF banks. Several
filter types have been implemented considering both
FIR and IIR approach. An algorithm to allocate dis-
tortion in the single subbands has been implemented to
reduce the total entropy at the output of the synthesis
system.

The subbands coefficients have amplitude distributions
which can be approximated with Laplacian functions.
This is used to realize UTQ quantizers with recon-

" structed levels optimized for minimum distortion. The

quantified coefficients are then coded using both Huf-
fman and run-length coding.

2. The wavelet decomposition

In the multiresolution analysis, proposed by Mal-
lat [1], two functions are defined: the scaling function
O(x) and the mother wavelet y(x). For a fixed m the
set of functiohs §mx(x)=2""2¢(2x—n)which are
dilated and translated versions of the scaling function
forms an orthonormal basis of V_. Let V_ denote the
subspace formed by the approximations of all the
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functions in L? [a,b] at the resolution 2”. V_ includes
all " lower  resolution approximations SO
VacVicVec Vo cVo,... The discrete approx-
imation of a function fe L? is described by the coeffi-
cients  @ma(f) = (Ommf) = [ Oma()x)dx  which
constitute the so called lowest approximation signal.
If the function is given in sampled form then these
“samples constitute the highest order resolution ap-
proximation  coefficients @, The functions
Yinn(x) = 272y(27"x —n) span a space W, which is
exactly the orthonormal complement in V, , of V _.
The coeflicients dmn(f) = (Wmn, f) represent the detail
signal and describe the information lost in the transi-
tion from an approximation of f with resolution 2™ to
the coarser approximation V,_ at resolution 2” . The
coefficients a,,, and d, can be calculated with simple
digital filtering operations by:

+oo
am,n(f)z E h2n—kam~1,k(f)
)
oo
dm,n(f)= Z g2n-kam—1,k(/) (1)
Je=—oo

where g, =(-1)"h;-, and A, = ﬁ J¢(x—n)¢(2x)dx
are the filter coefficients. A reconstruction formula ex-
ists so that

+oo
am—l,n(f)= Z [th—nam,k(f) +g2k—ndm,k(f)] (2)
Koo

The synthesis and the analysis filters are related by
H'(Z=H(z"), G'(2)=G(z') and G(z)=z'H(-z"). If
piecewise polynomial wavelet functions are used then

the relationships between the scaling function ¢(x) and
the filter H are [1]:

[ZZn (0‘))]
2"[Ezn o)’

H(o

€)

where

3 (@)= y 1

oo (OO +2km)"

and n=2p+2 where 2p+/ is the degree of the building
polynomials.

3. Wavelet packets decomposition

The wavelet packets decomposition is obtained by
further decomposing every subband in the transition
from a finer to a coarser decomposition level. Let
w’, () be the approximation of a function /e L2at the

highest resolution (m=0). At the decomposition level
m, 2" subbands are obtained, all with the same spectral
width and the same number of coefficients in the inner.
We denote by w, (f) the j-th (0 <j < 2™)subband co-
efficients that approximate f at the resolution level m.
It is possible to decompose w, () by means of digital
filtering operations such that:

Wm"(f) E h2n—kW1 ()

Wi (f) = z oW1 1) )

j=0...2""

The expressions (4) show that w/_, is subdivided in
two sequences: w” and w?* . The first one repre-
senting the approxxmatxon of W m.1n at the Tesolution
level m, while the second is the derazl that is the in-
formation we need to reconstruct w,_,  fromw?

The reconstruction algorxthm is shown by the relation:

m—l,n(/) = Z th—kW'n,n(f) +g2n—kwm,n (f) (5)
f=—oo

The number of multiplications to perform the wavelet
packets transform with FIR filters is M =mNr, where
m is the decomposition level, & is the number of signal
samples, 7 is the number of the filter coefficients.

4. Compression systems

The compression process works on a set of
samples called frame. It consists of four steps: wavelet
packets transformation, distortion allocation, coeffi-
cients quantization and coding. A visual scheme of the
compression system architecture is given in Fig.1.

We have implemented the wavelet packets de-
composition because it can also be used with purposes
related with the EEG analysis. This decomposition
subdivides a frame in 2™ subbands with the same spec-
tral width, being m the decomposition level. Thanks to
the decimation process there is not redundancy so the
total number of coefficients remains the same. This is
important since it resolves the problem of the enor-
mous number of coefficients when using analysis filter
banks. In our tests we have found that some typical
EEG graphoelements like epileptic spikes, alpha
rhythm etc. are more evident in the subbands than in
the original tracing.

We have used three different types of wavelet
packets decompositions: in the first two the filter H is
a FIR filter obtained from linear and cubic piecewise
polynomial wavelets, while in the latter H has been im-
plemented with an IIR filter derived from linear poly-
nomial wavelets [2]. In the following we shall denote
the two FIR and the IIR filters by LIN, CUB and IIR



respectively.

The coeflicients in the high-pass subbands are di-
rectly quantized, in fact they are sufficiently decorre-
lated and their distribution can be approximated with a
Laplacian function. In the low-pass subband the co-
efficients maintain a certain correlation that we reduce
by means of a DPCM scheme. A fixed distortion
(MSE) at the output of the synthesis system can be
imposed. It is possible to allocate this distortion in
every subband in order to reduce the bit-rate [3]. Once
distortion is allocated we proceed with coefficients
quantization. We have used a scheme with an UTQ
quantizer [4] for every subband. Thanks to the hy-
pothesis of Laplacian distribution, it is possible to ob-
tain the reconstruction levels in a closed form.After
quantization, the coefficients are finally coded. An
Huffman coder and run-length coding [5] have been
used.

wavelet
data packets
acquisition decomposition —l

FRAME distortion
DECOMPOSITION | allocation
run-lenght coefficients

coding quantization

NO

Fig.1 Data compression system architecture.

5. Experimental results

We have based our tests on two different record-
ing. The first represents an EEG tracing from a normal
patient while the second is recorded from an epileptic
patient. Every tracing is obtained by an EEG machine
(GALILEO VEGA 24 by ESAOTE BIOMEDICA

S.p.A) with a 128 Hz working frequency, 8 bits per
sample. In order to obtain virtual real time execution
the original tracing of 25600 samples, corresponding
to 3'20" of recording, has been subdivided in 10
frames of 2560 samples each, and every frame has
been compressed separately.

We have implemented the compression systems
on a 386DX PC-IBM compatible machine, with a
clock frequency of 33 MHz and math coprocessor.

We impose a value of SNR to fix a determined
distortion. SNR is calculated with the expression:

» Z [x()~x,())*
SNR =-~10log

2552

The compression performance varies with the prede-
termined reconstruction accuracy as it can be seen in
the following tables.

Bit-rate Compression
(bit/s) time (s)
IR 1.65 8
LIN 1.66 12
CUB 1.56 13
Tab.1  EEG tracing from normal patient, SNR=45 dB, de-
composition level m=1.
Bit-rate Compression
(bit/s) time (s)
IIR 1.9963 9
LIN 1.98 13
CUB 1.8931 14
Tab.2  EEG tracing from an eplleptlc patient. SNR=4S, de-
composition level m=1.
Bit-rate Compression
(bit/s) time (s)
IIR 3.45 17
LIN 3.44 20
CUB 3.32 24
Tab.3  EEG tracing from normal patient. SNR=55 dB, de-
composition level m=1.
Bit-rate Compression
(bit/s) time (s)
IR 3.4038 46
LIN 3.3919 52
CUB 3.2394 59
Tab.4  EEG tracing from normal patient. SNR=SS dB, de-
composmon%evel m=2,
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We have better performance with the normal tracing
rather than with the epileptic one. This could have
been expected since epileptic tracing is less correlated
than normal one.
The tests with different analysis filter banks denote
that the best performances in bit-rate terms are ob-
tained with CUB filters while LIN and IIR give almost
the same performance, while compression times yield
the IIR banks faster than the others. However even by
using the slower bank (CUB) we can see that 3'20" of
recording are compressed 59" for a second level de-
composition).

In the following figures we show the recon-
structed waveforms in comparison with the original
ones for different imposed SNR.
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Fig.2 Reconstruction of 320 samples from epileptic trac-

ing. CUB filters, SNR=45 dB.
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Fig.3 Reconstruction of 320 samples from epileptic trac-

ing. CUB filters, SNR=55 dB.
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Fig.4 Reconstruction of 320 samples from normal tracing.

CUB filters, SNR=55 dB.

6. Conclusions

In this work a system for EEG data compression
based on the wavelet packets transform has been pres-
ented. Three different banks has been used. The bank
denoted as CUB has given the best results in terms of
compression ratio and acceptable performance in
terms of computational cost.
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