QUATORZIEME COLLOQUE GRETSI - JUAN -LES-PINS - DU 13 AU 16 SEPTEMBRE 1993

FRVERY]

A SIMPLE AND EFFICIENT OBJECT ORIENTED BLOCK PROGRAMMING

(OOBP) PARADIGM FOR SIGNAL PROCESSING SOFTWARE DEVELOPMENT

Thierry DUTOIT, Vincent FONTAINE, Henri LEICH.

Service de Théorie des Circuits et de Traitement du Signal,
Faculté Polytechnique de Mons,
31 boulevard Dolez, B-7000 Mons, Belgique.

RESUME

La programmation est une composante essenticlle du
développement d'applications en Traitement du Signal. Aprés
un bref rappel de quelques critéres de programmation, qui
permettent de souligner I'importance d'une description
hiérarchique des systémes, nous introduisons un paradigme de
programmation original basé¢ sur la Programmation Orientée
Objet par Bloc. Nous en exposons les trois niveaux de
description empruntés & VHDL (la spécification d'entité,
l'architecture, et la configuration), et en commentons I'usage
des concepts d'encapsulation, d'héritage, et de polymorphisme.
Nous montrons qu'il permet de satisfaire 2 nos critéres de
programmation sans nécessiter l'intervention d'un noyau de
contrdle caché. Enfin, nous en proposons des extensions, qui
offrent des facilités de contréle supplémentaires.

1. INTRODUCTION

More than any other discipline, Signal Processing is now
thoroughly involved in Computer Science. As a result, the art of
programming has become an important component of our
everyday life as Signal Processing scientists, for at least three
reasons :

1. Simulation and Research, for which we often relax some
feasibility constraints, such as real time or memory constraints,
to focus on functionalities.

When a digital system has been successfully simulated, it can be
turned into a concrete application-oriented system. This may
currently be done in two ways, both of which are again highly
dependant on programming strategies:

2. Software Development. Digital Signal Processors are
extensively used in this area, whether it was through general
purpose DSP boards .or. application specific ones. Tools for
compiling structured languages are now available for most of
them, with a clear dominance of C, for serial and parallel
computing.

3 Hardware Deyelopment. ASICs recently appeared to be an
~ interesting ecomml solution for implementing algorithms.

Again, Hardwage Development Languages (HDLs, as opposed
to Software Development Languages, SDLs) have emerged,

ABSTRACT

Digital Signal Processing scientists are increasingly involved
in programming, Afier a brief recall of some programming
quality criteria, in which the importance of a hierarchical
description of systems is underlined, this paper introduces an
original Object Oriented Block Programming (OOBP)
paradigm for DSP software development. The use of
encapsulation, inheritance, and polymorphism by its VHDL-
likc threc descriptive levels (namcly catity specifications,
architectures, and configurations) is exposed. It is shown to
fulfil the aforementioned criteria, without the need to
incorporate complex kernels to control data flows. Extensions
are finally proposed, which provide programmers with optional
monitoring facilities.

reducing most of the work into programming, and turned into a
world-wide standard : VHDL ([IEEE 87], [Airiau et al 90]).

For all these reasons, it is worth considering, at least for a
moment, the form of our programs rather than their content.

2. PROGRAMMING PARADIGMS

Let us first consider some constraints encountered when
programming digital systems (through S or HDL), and recall
the pros and cons of some programming paradigms currently
available. Constraints are often be referred to as :

- programming speed and error correction speed, which mostly
depend on the existence of error free libraries;

- computation speed, which can be increased in three ways : by
the prograinmer himself (often at the expense of the portability
and readability of his source code), by the compiler if
pptimization tools are available, or again through the use of pre-
pptimized libraries (the only solution in the case of HDLs,
VHDL 's intensive use of packages being a good example).

- readability : the closer the code is from its functionality, the
better it can be understood, and used, by others.

- last but not least : portability. Porting software applications on

- QAP platforms is mostly ensured by the use of the C language

1016

(and proi)ably C++ in a near future). Implementing C programs
into ASICs, however, is greatly facilitated if the original
material has been written in a strongly structured way, by
grouping logical functionalities into blocks with simple and
clear /O, so that the final code closely matches its block-
diagram representation.

Structured programming is the most popular programming
paradigm today in the Signal Processing society. It gave birth to
Signal Processing libraries, that greatly increase the
programming speed, while slightly affecting the computing
speed, given the time required to load/unload stacks. Error
correction itself is accelerated, since well-designed libraries are
generally error-free. Data accesses are restricted to their
visibility, and functionalities are hierarchically grouped, so that
readability, and extendibility are also increased.

Problems, however, mainly arise when trying to design libraries
for complex functionalities. Most commonly available C
libraries for example, include functions that perform simple
tasks (in terms of control statements only;, the mathematical
complexity of 'simple tasks' can be enormous !). Describing
intricate processes in terms of structured programming
generally requires the creation of functions with kilometric
parameters lists. Even though, a slight modification of a sub-
process would most often force the programmer to rewrite a
complete version of the process.

Other problems are encountered when functionalities have a
memorizing comportment. We all have produced code
describing some filter as a function of its input, output,
coefficients and internal variables, even if the last ones were left
untouched at run time (after the filter initialization). The bigger
the process, the more internal variables it will include, most of
them generally being perfectly useless outside the process
itself... Data definition and accesses are then clearly performed
out of their logical visibility.

Object Oriented Programming (OOP) languages, under the
banner of C++, are a very flexible solution to these
impediments. Encapsulation allows memorization, inheritance
avoids rewriting, and polymorphism is the key to building
libraries of complex systems. The point is that they are not yet
supported by DSP compilers, mostly because they have only
been partially adopted by our community. In the particular case
of C++ however, commercially available pre-processors allow to
transform any Object-Oriented code into standard C. Portability
to DSP platforms is thus possible, but errors are difficult to
correct, since the resulting C code is hardly readable. Optimized
OOP compilers would help.

On the opposite of a structured programming fanatic, the adept
of OOP spends most of its programming time thinking of the
best way to describe the process he is interested in, the best
inheritance scheme to adopt, so that the code he will have to
write will be maximally "logical". The point is that there are
many "logics” that would be worth to follow. Should objects be
defined around data, or around functions ? Which methods to
define ? When to use inheritance ? When applied to Digital
Signal Processing in general, this mental task may last months.
Such intensive thinking gave birth to some interesting
frameworks, that will now be quickly recalled.

The concept of Object Oriented Signal (i.e. OOP defined around
data) has been imagined and developed since the eighties.
Systems like SPLICE [Myers 86] and QuickSig [Karjalainen et
al. 88] are good examples. A comprehensive approach of this
paradigm is given in {Karjalainen 90]. QuickSig itself, which is
based on an Object Oriented version of the LISP language, was
recently adapted so that LISP atoms could automatically be
turned into compiled code for the TMS320C30 DSP.

Block Processing itself (i.c. OOP defined around functions) is
an old concept ([Goldberg & Rader 69}, [Covington et al. 87],
[Zissman & O'Leary 87]) that naturally accounts for the
modularity of signal processing systems. It tends to define any
operation through (and only through) a block or data-flow
diagram, and is now used extensively by commercially available
DSP graphical compilers, such as Comdisco 's Signal
Processing Worksystem, HP 's Visual Engineering Environment
[Beethe 92], or National Instrument 's LabView, often presented
as "alternatives to cumbersome text-based programming”.
These are very interesting tools for learning, and for producing
some specific DSP software. Researchers, however, are often
reluctant to use them for intensive programming, because they
loose some control on the actual execution of their code, where
important "hidden" kernels play a non-trivial role.

Being faced ourselves with the practical need to adopt an OOP
approach for Digital Signal Processing, and aware of the high
acceptance of C in the Signal Processing area, of the high
degree of standardization of C-++, and of the possibility to port
it to DSP platforms, we decided to develop our own OOP
paradigm for DSP software development. The criteria we
adopted were the previously introduced constraints, plus one
important aspect : ideas should be kept simple. No complex
kernel should have to be available to run our objects, neither
should it require intricate formulations. What 's more, any
intermediate approach between structured programming and
ours should still be possible, so that OOBP may be progressively
used in a progressive way. To achieve this, as clearly appears in
the previous discussion, a Functionality Oriented design was
more than welcome. This resulted in an Object Oriented Block
Programming (OOBP) approach that will be detailed in the next
paragraphs. For practical reasons, examples will be given in
C++, but the ideas are language-independent.

3. OBJECT ORIENTED BLOCK PROGRAMMING.

Most of our work resides in a multilevel description of
processes. Starting from VHDL ideas, we exploit hierarchical
recursive structuration by describing any DSP task as block
object, which may itself include other blocks defined as sub-
blocks for the current task (it should be noted that inclusion, in
this context, means that any block owns its sub-blocks; it has
nothing to do with inheritance). Sub-blocks are themselves DSP
tasks (i.e. blocks), and so on. We define the order of a block as
the order of its highest-order sub-block plus 1, or O for final (or
base) blocks, which have no sub-block. The highest order block
is called the main block. Running the program is equivalent to
launching its process.

Blocks exchange information through external data structures,
for which QOP can also be used, but it is not essential. These
have their own existence in memory, independently of the
blocks that address them. They are generally dynamically

created (and disposed) by higher order blocks, in which they are
considered as internal variables.

A second and more abstract classification is performed,
independently of the notion of order. As in VHDL, any task
may be considered at three levels, namely the entity
specification level, the architecture level, and the
configuration level. They correspond to different levels of
knowledge on the actual task of a block. Configurations inherit
from architectures, which themselves inherit from entity
specifications. This completely captures our use of the
inheritance concept.

3.1. Entity Specifications.

The entity specification level describes a task as a black box. It
restricts its knowledge of a block to its functionality, i.e. the
type of its inputs and outputs (though virtual types are
admitted), and the symbolic operation (as opposed to the precise
algorithm) by which they are related to one another through the
process. The basic idea is that two descendants of a common
entity specification can always be exchanged without affecting
the global functionality of the higher order blocks that include
them : polymorphism ensures compatibility for the outer world.

A typical constructor has the form (written with LL1-like
abstractions for convenience) :

SomeEntity:SomeEntity({Parameters})

in which, in order to allow genericity, some parameters may be
passed, provided they are strictly related to the block 's
functionality. For reasons that will be clarified later, entity
constructors do not define their actual /O : these are not passed
to the constructor, but rather defined through a specialized
method :

SomeEntity:[0_Def({Inputs}.{Outputs})

where "Inputs" and "Outputs" stand for references to external
data structure(s) used as input and output buffer(s). All entities
inherit from a common ancestor, the block object, which only
declares a virtual "Process()’ method :

class Block :
{ virtual void Procees() {} ; };

"Process()’ does nothing by default, but will be overridden by the
corresponding method of the architecture level, to implement
the actual algorithm of the block. Overriding cannot be
performed at the entity level, since entities have no information
on the algorithm used to complete their task. Similarly, no
explicit destructor is needed, since entities don't own their I/O.
Finally, any entity specification object has the form :

class SomeEntity : public Block
{[parameters values]
[pointers to the /0 data structures]
SomeEntity(...) ; // constructor
void 10_Def(...) ; // I/0 definition methed

2

Turs

3.2. Architectures

Architectures go one level deeper. An architecture knows the
functional block-diagram chosen to perform the current task. It
includes references to all its sub-blocks and internal variables.
Its main task is contained in its (overridden) Process() method,
which may itself call the sub-blocks "Process()’ methods. ’

Sub-blocks are not created by the architecture. They are
dynamically constructed outside of it, and passed to architecture
's constructor. The key point is that instances of configuration
level blocks (see below) with undefined I/O are passed, though
they are seen as entity specifications by the architecture. This is
a necessity for the aforementioned interchangability
architectures access their sub-blocs as black boxes. It also
motivates, a posteriori, the existence of a virtual "Process()’
method in the Block object.

Architectures are totally responsible for their internal and
transfer variables. These are created by the architectures during
their construction, and disposed during their destruction, so that
encapsulation is observed. Consequently, sub-blocks I/O can
only be defined after transfer variables have been created, i.e.
after sub-blocks have been constructed. That is why the 10_Def
method was designed at the entity level : it is called by
architectures to fix their transfer variables as 1/0 for their sub-
biocks.

The general structure of an architecture is thus given by :

SomeArchitecture : public SomeEntity
{[pointers to (entity specification) sub-blocks]
[pointers to internal and tranefer variables]
SomeArchitecture([{SubBlocks},] [{Parameters}]);
~SomeArchitecture(); //deletes int. var. +sub-blocks
virtual void Process();// algorithm

k

3.3 Configurations.

In order to run a block, its is necessary to construct an instance
of one of its existing architectures. This requires the prior
construction of all its sub-blocks, since architectures never
construct them, Constructing non-base sub-blocks may itself
involve the creation of lower level sub-blocks, and so on. To
avoid this tedious cascaded comstruction chain, pre-defined
configurations (i.e. configured architectures, which completely
own their sub-blocks and fix up virtual types) should always be
associated with architectures. These may then be used as base
sub-blocks when configuring higher order blocks. Configuration
object have a very simple form :

SomeConfiguration : public SomeArchitecturs
{SomeConfiguration ({ Parameters }): %;

where {Parameters} is gencrally a copy of the architecture 's
parameters list. No explicit destructor is needed : the inherited
architecture s one makes gl the job.

1018
3.4, Comments

The OOBP paradigm that was exposed in the previous
paragraphs fully satisfies our initial criteria :

e As such, it allows the conception of block libraries that have a
much broader application range than with structured
programming and the same extendibility as in VHDL.

o Readability is also ensured since, as in VHDL, our OOBP
formalism is based on a clear description of processes in the
form of configurable architectures.

s Computation speed is better than with structured
programming. The absence of parameters in the "Process()’
method (no more stack loading/unloading) more than
compensates for its virtuality (functions calls are indirect).

» Portability needs a special attention. When developed in C++
{(as we did), our paradigm benefits fiom the besi available SDL
portability, for two reasons : 1. As mentioned earlier, passages
exist to DSP implementations. It is clear that possible further
developments of OOP compilers for DSP will be for C++.
2. Our three level approach constitutes the first step of a
descriptive programming of system, as opposed to a procedural
one. As such, most of the mental work that is done when
systems are structured into hierarchically related blocks is
langnage-independent. For the same reason, portability to HDLs
is highly increased : our structured representation of processes
is precisely the first step to their VHDL description ! The main
difference between the OOBP paradigm proposed and VHDL
descriptions actually is that our architectures explicitly control
the way their sub-blocks are processed, though this is done
automatically by VHDL simulators, by taking a virtual 'time'
parameter into account. This difference is clearly the result of a
choice : explicit control is an essential information to ensure a
high computing speed on sequential machines.

o Finally, simplicity is respected. The ideas and the way they
are expressed in the code are almost straightforward. No kernel
is needed to run and handle blocks : just instanciate a
configuration, supply it with external inputs and outputs, and
run its "Process()'.

As such, however, we have no yet fully exploited the power of
our objects... Some optional but very helpful extensions are
welcome.

POSSIBLE EXTENSIONS.

Highly interesting features may be added to our blocks, by
simply extending the competence of the Block object. Some
more general-purpose methods can allow an external kernel to
provide additional and optional control on any block, while
insignificantly decreasing the computing speed, and slightly
increasing the code size.

A run-time error handling method, which reports run-time-
errors and associates them with the block in which they occur,
is a good example. It can be economically implemented if each
block stores its name in one of its fields.

One can then use the Block object to provide each block with
viewing facilities for its inputs, outputs, transfer and internal
variables. This is performed simply, by introducing some slight
modifications in our basic organization :

¢ Calls to the 'Process()' method of sub-blocks should be
changed to calls to an intermediate 'Compute()’ method, which
is defined in the Block object, and has the same external
behaviour as 'Process()', as far as computation is concerned. It
effectively runs the "Process()’ method, and then checks if
viewers have been opened for the current block, in which case it
refreshes them.

e In order for the 'Compute()' method to detect viewers, a
dynamic array of pointers to viewers is declared in the Block
object, the content of which is automatically actuatized
whenever an architecture activates or closes one of its viewers.
Viewers activation itself may be virtually declared in the Block
object, and practically overridden in architectures.

In a nutshell, the Block object can be defined so as to centralise
all the information that is necessary to monitor the execution of
its task, with no real interference with the task itself. Such
facilities are opfional in the sense that it is possible to define
several compatible implementations of the Block object, so that
the same QOBP source code can be compiled with or without
them.

The OOBP Signal Processing library we designed at the FPMs
TCTS labs currently includes a minimal (DOS compatible)
version of the Block object, in which the ‘Compute()' method is
directly (inline) mapped to the Process()’ one, and a Windows
version with full facilitics. Programmers may use both
indifferently, with NO modification in their OOBP source code.

BIBLIOGRAPHY

[Airiau et al. 90] R. Airiau, J.-M. Bergé, V. Olive, J. Rouillard,
VHDL, du langage a la modélisation, Presses
polytechniques et universitaires romandes, Lausanne, 1990.

[Covington et al 87] C.D. Covington, GE. Carter, D.W.
Summers, "Graphic Oriented Signal Processing Language,
GOSPL", ICASSP 87, Dallas. :

[Gold & Rader 691 A. Goldberg & C. Rader, Digital Processing
of Signals, McGrawHill, New York, 1969.

[IEEE 87} IEEE Standard VHDL Language Reference Manual,
IEE standard 1076-1987,

[Karjalainen et al. 88] M. Karjalainen, T. Altosaar, and P.
Alku, "QuickSig : An Object-Oriented Signal Processing
Environnement”, JCASSP 88, New York.

[Karjalainen 90] M. Karjalainen, "DSP Software Integration by
Object Oriented Programming : a Case Study of QuickSig",
IEEE ASSP Magazine, vol. 7, N°2, pp. 21-31, April 90.

[Myers 86] C. Myers, Signal Representation for Symbolic and
Numerical Processing, Ph. D. Thesis, MIT Technical
Report 521, august 1986.

[ZissMan & O'Leary 87] M.A. Zissman, G.C. O'Leary, "A
Block Diagram Compiler for Digital Signal Processing
MIMD Computers", JICASSP 87, Dallas.

