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RESUME

Dans cette communication on propose un systéme pour
le contrble automatique du traffic maritime & proximité des
ports. Le systtme utilise des réseaux de neurones pour le
traitement de séquences d’image formées par un systeme
radar opérant dans la bande X. L’utilisation de réseaux de
neurones accroit la précision par rapport aux techniques
traditionelles. On indique les résultats fournis par le systtme
proposé et par quelques techniques classiques de traitement
des images. Le probléme de la détection de I’angle de dérive
a été étudié pour prévenir les situations de collision.

1. INTRODUCTION

In ship traffic control, the analysis of the trajectory of
a ship with respect to the position of the ship-prow is
fundamental to prevent drifting situations and collisions.

In automatic collision avoidance systems using imaging

radar sensors, real-time processing and high accuracy in

feature location are requested. In this paper a neural system
for the automatic control of ship traffic in the access area of
a seaport is proposed. The system employs Artificial Neural
Networks (ANN’s), thus improving system reliability and
measurement accuracy and reducing the computational
complexity with respect to classical image processing
~ techniques.

A real-aperture radar system can provide significant
image sequences of the area near a seaport. In this study,
images formed by a radar simulator have been processed, in
order to test precision and reliability of the ship location and
tracking process. The characteristics of the simulated radar
system are summarized in Table 1.

The paper is structured as follows: in Section 2 the
image segmentation phase is described. It is performed in
two steps. First, a class membership probability is assigned
to each pixel of the input image by using second order gray-
level statistics obtained from the cooccurrence matrix. These
probabilities then form the input of a multi-layer perceptron
which performs the final supervised classification.
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In this paper a system for the automatic control of
ship-traffic in the access area of a seaport is presented. The
system employs Artificial Neural Network techniques
applied to sequences of X-band real-aperture radar images
to achieve system reliability and measurement accuracy. A
comparative study between neural and classical approaches
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detection of drift-angles for automatic collision avoidance.

In Section 3 the feature-extraction phase is explained. Ship-
prows are accurately located in order to estimate the motion
directions of ships and compute possible drift-angles. The
automatic location of ship-prows is performed in two steps,
both employing multi-layer perceptrons.

Section 4 describes the phase of ship-tracking, which
refines the ship-orientation estimates and provides a
technique for motion prediction. The experimental results
and a comparative study between the proposed feature-
extraction neural system and some classical shape-analysis
techniques are reported in Section 5.

2. SEGMENTATION

The image segmentation phase is performed in two
steps. First, a probabilistic segmentation of the image is
performed, based on the location of the intensities of each
pixel and its neighbor within the cooccurrence matrix [1].
Since on-diagonal peaks characterize regions and off-
diagonal peaks characterize boundaries, the cooccurrence
matrix can be utilized as a feature space. Let S,(i,j) denote
the cooccurrence matrix corresponding to a displacement A

S0 = LY 8GI0) G I0+4) $@sx+t) (D)

where I(x) is the intensity of pixel x, the summations are
extended to the whole image and &(i;j) denotes the
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Kronecker delta function d;.

In order to define a segmentation algorithm, it is
possible to relate the cooccurrence matrix of an image to the
intensity and region probabilities of a set of images. The
objective is to express the matrix in terms of the conditional
probability for a pair of pixels to have observed intensities,
given that their region membership is known. S,(i,j) will
contain a number of symmetric maxima R, (a = 1,..,k) on
the leading diagonal together with corresponding off-
diagonal asymmetric maxima B, (a,b = 1,..,k; ab). The
classification assigns both region membership and whether
the pixel is interior or boundary relative to the cooccurrence
direction. It is expressed as a probability p,*(a,e), where a
= 1,..,k denotes region and ¢ = 0,1 interior or boundary
respectively. For example, the probability of x belonging to
region R, is

k .
pi(@0) = pa;ja)! Y, p,(ia;ja) )
a=|
where
paasjay = p(la;j|a) p,(a;a) 3)

The conditional probability in (3) can be approximated by a
Gaussian distribution

=5+ (-5 (=i,) (j-i)
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where M,, is a normalization factor, the values i, (a =
1,..,k) are given by the maxima on the main diagonal of
S,(1,j) and ¢, and ¢,, may be determined directly from the
half-widths of the corresponding maxima in S,(,1).

The second phase uses the probability map generated by
the first phase as the input of a multilayer perceptron which
produces the final pixel classification.

Purely statistical classifiers consider only gray-level
information, completely disregarding spatial relationships
between pixels. This fact produces incorrect and noisy
segmentations. Conversely, the ANN classifier improves
spatial consistency and also adds expert knowledge by means
of manually segmented images [2].

Training of the perceptron (with three layers) is
achieved by Back Error Propagation. The input of the
network is formed by the class membership probabilities of
pixels over a given window W; the output is interpreted as
a class assignment of the central pixel. W has been chosen
of size 7x7, only two classes - ship and sea - have to be
classified, hence the first layer is formed by 49 neurons and
the output layer contains only one neuron. The hidden layer
has been limited to five neurons.

3. FEATURE EXTRACTION

In the feature-extraction phase, ship prows are

accurately located in order to estimate the motion directions
of ships and compute possible drift-angles. The automatic
location of ship-prows is performed in two steps. The first
step generates search windows for prows from coarse-
resolution images. The second step uses those search
windows to locate prow features inside high-resolution
images [3]. Both steps employ multilayer perceptrons. The
multiresolution approach for prow detection is based on a
pyramidal decomposition of the original images. This
approach allows to reject a large number of false alarms that
would be detected in a purely high resolution system and
strongly reduces the computational complexity.

The purpose of the MLP in the coarse-resolution stage
is to approximately locate the ship prows from the
previously segmented images to form raw search regions.
The image shrinking operation reduces each original image
of the sequence by a factor of 2 or more for each direction,
by a convenient multistep process. Each coarse-resolution
image is raster scanned by a 5x5 window forming the 25
pattern vector presented to the MLP. Output values above
a threshold imply a search region pixel for prows and are
set to 1; those below the threshold imply a rejected pixel
and are set to 0.

The total area covered by the search regions should be
small enough (about 10% of the total image area or less) to
maintain a reasonable Ievel of computational complexity and
to reduce mistakes in the high-resolution stage.

The fine-resolution stage takes the search regions
generated by the coarse resolution stage and, using a raster
scanning sliding window, searches within them for ship
prow regions. As in the coarse-resolution stage, an MLP
feature detector is used for the location process.

The orientation of a ship is then computed as the angle
formed by the ship centroid and the ship prow previously
detected. Starting from this angle, it is possible to estimate
the angle of yaw, formed by the ship-centroid velocity
vector and the ship-prow orientation.

The radar resolution affects the estimation of the prow
position and consequently the computation of the ship
orientation. In real-aperture mapping radars the resolution
in the cross-range direction is proportional to the antenna
beamwidth. For a rectangular antenna generating a fan
beam, the approximate expression for half-power antenna
beamwidth is given by

n=51A/L )

where 7 is expressed in degrees, A is the system wavelength
and L is the horizontal dimension of the antenna. The
azimuth resolution is obviously limited by the maximum
antenna dimension, while the range resolution can be easily
improved by reducing the duration of the transmitted pulse.
The radar simulator used in this work simulates a radar
system with 1 = 0.4 degrees and range resolution AR =
6.25m. If the distance d from the antenna increases, the



Table 1 - Main characteristics of the simulated radar system

= o

Transmission frequency 10 GHz Antenna beam (azimuth) 0.4° ‘
Pulse Repetition Frequency 1600 Hz Antenna beam (elevation) 20°

IF band 24 MHz Antenna rotation 0.25 cps
Transmitter peak power 45 kW Quote of radar site 50 m

range error introduced in the radar map can be neglected
with respect to the cross-range position error. Thus, ford >
4+6 km, we can assume that the image I, of a ship in the
radar map is a modified version of the ship image I, formed
by a "maximum resolution" radar. In particular, I, can be
considered as the result of a stretching of I, along the
azimuth direction. This shape distortion is irrelevant for the
centroid position estimation, because of its symmetry
properties. Conversely, it shifts the ship contour points by
an amount that is proportional to the antenna beamwidth. A
calibration algorithm has been implemented. It shifts the
computed prow-position toward the scanning direction
(increasing azimuth) if 180° < « < 360° or toward the
opposite direction (decreasing azimuth) if 0° < o < 180°
(Fig. 1). The amount of this shift is R, where 7, is 5
expressed in radians. We assume that the side-lobes of the
antenna produce a distortion in the ship image whose effect
is eliminated by the image segmentation, while the distortion
due to the main-lobe width is not affected by the binarization
phase. Such considerations has been proved by some
experimental tests regarding the computation of the length
of a ship.

For all the images of the radar sequence, the
coordinates of prows after calibration and of ship-centroids
are memorized together with the angle of orientation of
every ship.

4. SHIP TRACKING

Working on a whole sequence of images, the positions
of all ships are tracked. First a matching operation is
performed in order to pair each point from the set of the
ship centroids at a given time with a point from the same set
at the following time. The main requirement of this
operation is to minimize the sum of the distances between
the points in these pairs. This process is iterative and it is
effective even if some ships appear in the scene or leave it
[4]. The repetition of the coupling process for all the images
of the sequence provides the direction of motion of every
ship approaching the port. It should be noted that the system
characteristics make the matching phase easy to perform.
Indeed, ships move very slowly, almost insignificantly,

during a scan period.

The subsequent phase refines the ship-position
estimates and provides a technique for motion prediction.
The «-B filter, which is derived from the Kalman filter
theory has been used [5]. The simple a-8 tracking filter is
widely used in track-while-scan (TWS) radar applications.
It is generally preferred to Kalman filter, because of its
easier implementation and better flexibility. However, «-8
filter is less effective than Kalman filter in non-stationary
environments, as during track initiations and maneuvering
target tracking.

In its easiest form with constant parameters, the «-B
filter is defined by the following equations at time instant k:

i0)= x,(0-x,)

x (k)= x p(k)+ a i(k)

(6)
v, (k)= v:(k—1)+.§ i)
xp(k+1)= x,(k)y+ T v (k)

where x,(k), x,(k) and x,(k) are the measured, predicted and
smoothed positions, respectively, v,(k) the smoothed velocity
estimation, i(k) the innovation and T the sampling interval.

The optimal predictor (in the mean-square sense)
minimizes the power of innovations. Therefore the optimal
parameters o and B depend on the statistics of the input
signal which, in turn, depend on the assumed model for the
target dynamics.

We assume that ships move along a straight line with
constant velocity (case of non-maneuvering targets) or
follow a circular trajectory with constant angular velocity
(case of maneuvering targets).

In [5] a strategy to adaptively change the parameters «
and B under the above assumptions is presented. The
objective is to minimize the error variance function. This
adaptation method belongs to the stochastic gradient family,
because it updates the parameters o and B by an amount
proportional to the negative gradient of the instantaneous
quadratic innovation. This technique has been applied to
solve the ship tracking problem.



1170
5. EXPERIMENTAL RESULTS

Table 2 shows the performance of the proposed neural
segmentation and of a threshold segmentation using an
optimum binarization threshold T, which is computed from
the statistics of the original image. Note that a lower final
classification error is achieved by the neural system,
especially using a 7x7 mask.

Table 2 - Comparison of classifier performance

Classifier Accuracy (%)
Threshold segmentation 88.3
Neural (mask 3x3) 87.7
Neural (mask 5x5) 93.1
Neural (mask 7x7) 96.8

Table 3 shows some results about the automatic ship-
course computation in the case of yaw = 0, for different
processing techniques. The deviation of the prow-orientation
from the actual value of the coarse-angle thus denotes a
processing error. For aspect angles o differing from 90°,
the estimation of the ship-prow orientation is affected by an

+h sqtaemns D AL ¢l
error which depends on « and on the distance R of the auxp

from the radar site. Course-angles are computed by a
classical image processing technique (CP) which locates the
prow positions from the centroidal map of each ship contour
and by the proposed neural system (NN). Subscript C
denotes the application of the calibration algorithm described
in Section 3. Each course-angle represents an average on an
observation time of 40 s (10 scans).

North

Figure 1 - Geometrical notation: « is the aspect angle, v
measures the prow orientation.

The experimental data show that the proposed centroid
procedure does not introduce relevant errors if compared
with the sensor uncertainty (6.25 m in range and 4+6 m for
every km of distance from the antenna in cross-range). This
condition is strictly verified if the ship dimension and the

distance from the radar site allow a shape-preserving
representation of the target (ships longer than 80-100 m
located at a distance lower than 6 km from the radar antenna
have generated images correctly processed). Moreover,
prow positions are generally computed with no error in the
image plane, showing an extremely accurate behavior of the
process of prow detection.

Table 3 - Performance of the ship-prow location process for
different values of aspect-angles, for a classical (CP) and a
neural (NN) technique. Subscript C denote the application
of the calibration algorithm.

Course angle (deg) (* = actual)
Aspect * CP NN CP. | NN¢
angle (deg)
30 0 -1.0 -1.0 0.8 0.8
70 20 | 17.3 18.4 | 20.7 | 20.2
60 30 | 23.5 | 24.3 | 30.8 | 30.6
50 40 | 28.6 | 30.1 | 40.1 | 41.1
40 50| 37.7 | 38.2 | 48.5 | 51.6
30 60 | 423 | 45.7 | 56.2 | 58.4
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