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RESUME

Le but de cet article est de présenter une méthode de
débruitage temporel pour la parole en radiocommunication
mobiles, en supposant que le bruit du moteur est essentiellement
une somme des sinusoides de fréquence variable. Un algorithme
adaptatif rapide appliqué a un prédicteur en cellules du seconde
ordre est utilisé pendant les pauses de parole pour identifier les
sinusoides en temps réel et les retirer. Pendant les périodes
parlées, le bruit est retiré en utilisant des filtres 2 bande étroite
suivant les fréquences préalablement déterminées. Les résultats
d’écoute sont satisfaisants est ils sont présentés sous forme

graphique.

1. INTRODUCTION

Elimination of noise affecting speech signals in car phone
communication is desirable since engine related noise often
proves highly damaging to speech. Two approaches are
generally used, which differ in the way apriori knowledge about
noise is collected in order to perform the  extraction. One
approach uses another way to prelevate noise, independent of
the vecal path, usually a second microphone or noise
simulation  after measurement of the rotation speed of the
engine. The other method relies on pauses in speech, which
often occur in conversations, to identify noise. Again there exist
two ways of further proceeding. One consists of a frequency
approach to noise reduction by attenuating speechless frequency
bands or by subtracting the noise spectrum out of the signal. The
second way attempts an extraction in the time domain, thus
avoiding the inherent errors due to the Short Fourier Transform
which can affect the quality of speech. It is this latter method
that we will employ.

Noise will be adaptively identified in speechless periods
_using a prediction algorithm and an additional assumption on
noise content based on the car environment: namely that it
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This paper describes a method of time-domain noise
cancellation in a mobile communication setting, based upon the
assumption of noise being a periodic waveform related to engine
activity and using pauses in speech to linearly predict and thus
remove the noise. During speech intervals, noise is further
removed using narrow band filters tracing the frequencies
previously detected. Frequency identification in speech pauses
is done in real time using a gradient algorithm to decompose the
predictor into its second order components. Auditive
experiments are successful and results are visually presented.

consists of a sum of sinusoids possibly of variable frequency. In
these periods the predictor will also delete the noise. When
speech is present, that is when the adaptive algorithm can no
longer latch onto the noise, a method of following the changes in
frequency of the identified disturbing sinusoids and of further
extracting them is developed, thus fulfilling the task of noise
elimination. The two phases of the method are further described.

Z. IDENTIFICATION OF NOISE

Prediction of noise in speechless intervals will be done
using the linear predictor in Fig.1, which is already decomposed
into its second order terms for easy ‘on-line’ recognition of the
sinusoidal components. Consider the predictor H to be of the
form:

H(z)= ﬁHm (2) = ﬁ(1+almz" +a,,77) 1)
m=1 m=1

If the signal to be predicted consists of a sum of sinusoids, the
coefficients a;,, and ay, provide information about:
- the presence of the sinusoids if :
n=1
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and the number of unitary a,, coefficients indicates the
number of sinusoids.
- frequency of the sinusoids , because :
2n
3193 k,) 2
when ay, = 1, with k;, being the discrete frequency and 8192 the
sampling rate.
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Fig.1 Linear predictor of order 2p as a cascade of
second order terms.

So in order to identify the sinusoids one would have to
decompose filter H. In order to avoid a time consuming search
for roots, this can be done on-line by updating the coefficient
vector A=  [an ay .41, ay) using a gradient algorithm
operating in the tracking mode.
The function to be minimized according to Fig. 1 is:
J= E{e(ln)} = E{(H ® x)*,,}

with the gradient of e with respect to each coefficient ay, [2] :

_a(en+l)__ sy H(2) . _
gim—a(aim)_‘ {z '-——Hm(z)X(z)} i=12m=1p

which can also be seen to comply with the implementation in
Fig. 1. Let G=[g1 12821 €22 ... &1 " be the gradient vector,
then the updaté relation for the coefficient vector A turns out to
be:
A(n+1) = A(n) —R_IGG -G~e (3)
with Rgg the autocorrelation matrix of the gradient sequence.
We implemented the recursion in (3) using the Fast Least
Square (FLS) algorithm [1), chosen for its speed and stability
and for providing the possibility of tracking variable
frequencies. This is a viable alternative because the correlation
matrix of the gradient sequence gi; tends to be block diagonal
since its coefficients are highly correlated in each block :
Ln(n)= gim (n-1), but little correlated between different bloéks:
Reo(0.1,my,j,mz)~0 if m; # m,. The FLS algorithm described
in equations (4) was applied to each of the second order sections
-in filter H in Fig.1 with partial gradient sequences for input, thus
in effect implementing the recursion in (3). Here e, and e,
stand for forward and backward prediction error, FP and BP for

forward and backward predictor and K for gain. W < 1 is the
forgetting factor, E the starting error, while g is the input signal
with G the vector containing the input sequence, which actually
consists of the gradient values g;, in Fig.1.

& (+1)=gn+1)—FP(n)- Gy’
FP(n+1)=FP(n)+K(n)- ¢(n+1)

& (n+1) = gln+)—FP(n+1)- Giny’
En+)=W- E(n)+¢(n+1)-g,(n+1)

[M(n+1)]_[ 0 ]+€1(n+1) [ 1 } )
mn+1)] LK@ Bn+l) | -FPer+1)
e,(n+1) = g(n+1-N)—BP(n)- G(n+1y
_ Mn+D)+mn+1)- BP(n)
T l-mnt)-e(n+1)

BP(n+1)=BP(n)+K(n+1)- e,(n+1)
Dimension N in our case is 2. After obtaining the forward and
backward predictor FP and BP the gain K is used to further
compute;

e=H"-X

[a, (n+1)] [a, ()] X ®)

= — -e
l_az,n (n+1) a, (n)J

for each m in (l..p), with vector X containing the signal

K(n+1)

sequence in Fig.1. Differentiation with respect to the roots of
predictor H is achieved by updating only p-1 of the p second
order blocks at one iteration, each starting with the same initial
value.

If the input signal x is periodic, thus perfectly
predictable, the output e will rapidly tend to zero when using the
FLS. Thus at the end of every speech pause, the frequencies ky,
and their number are already identified using relation (2) if the
ay, coefficients are equal to 1.

3. NOISE REMOVAL IN SPEECH INTERVALS

The cascade structure in Fig.l also allows for easy
removal of the noise sinusoids during the speech periods, when
the FLS is no longer used. Adding to the second order FIR
filters an IIR part one can obtain a frequency efficient Notch
stop-band filter described by the following equation:

Vi) =Xty T ™ Xty T oy * Xy —

~(1-8)-a,, Y,y ~1-€) -, o)

where x, and yn are the input and output of the m™ second order

(6)

filter and € > O is a small constant. This can be achieved since,
as can be seen, the IIR coefficients are directly related to the FIR
part. The number of these filters applied in this phase of the
noise removal depends on the number of sinusoids identified in
the previous speechless interval and the coefficients ay, are the



ones determined by the adaptive algorithm. An advantage of
this kind of extractor with respect to a predictor generating the
sinusoids for subsequent extraction is that changes in the
amplitude of the noise do not matter.

The filter just described also
components of the same frequency with the noise sinusoids. It is
according to the

removes signal

an inconvenience but not a large one
experimental results. To insure that the frequency modifications
of the noise sinusoids are traced even in the speech intervals, the
output of the filter H in Fig.1 is controiled, independently of the
general signal output, by pairs of two bandpass Notch filters,
with central frequencies of k;, & a small offset, according to the
relations:

Zoi) =€ Yoy TAE) A 200 +(1-€)-a, Zritny
z’ﬁ’_‘) =€ ) +(1"'8) -d 'lm'z'Q(n—l) +(1—8)2 Gy’ z’ﬂ(n)

The number of pairs corresponds to the number of sinusoids
previously detected in the speechless interval. Coefficients ajy,’
and a;,”" are obtained from (2) by adding or subtracting a fixed

)

offset to frequency ki, , whereas coefficients a, , are equal to 1
if a sinusoid was previously detected.
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a'1m = =2 cos(
(8

T
am =—2- cos(8192 (k,, — offset))

By detecting the envelope of the z, filters, a simple
algorithm for varying the central frequency of the H,, filters in
Fig.1 along with the frequency shifts in the noise sinusoids can
be developed by taking advantage that one is in the discrete
domain:

if  anv(z,)%anv(z,,) =k =k, A &)

mint1) = Bmemy =

where A is a chosen constant and ‘anv’ stands for the envelope
detector. It can happen as will be seen in the experimental
results, that the output of the filters z,,; is affected at certain
instants by signal components in the frequency band that these
filters pass. In this case the frequency k,, is lost, but since speech
pauses occur frequently thus restarting the adaptive prediction
algorithm, the overall loss in signal is little.

In this way noise extraction is simply performed in both
periods with or without speech, taking into account that all the
algorithms described, amount to filtering in the discrete domain
with few coefficients. In contrast to frequency-domain noise
extraction, this algorithm is far less computational intensive.

4 EXPERIMENTAL RESULTS

Experiments where conducted on portions of speech signals
perturbed by sinusoids of variable frequency. Fig.2 shows a 3
-seconds long portion of a speech signal. Noise was simulated by
adding two different chirp signals with frequencies increasing
and decreasing in this interval. Fig. 3 shows the result of adding

the noise to the initial speech signal, Auditive tests prove that
the disturbance is fairly significant.

The signal in Fig. 3 is further processed using the
algorithms previously described to produce the output in Fig.4.
During speechless portions of the signal the FLS algorithm
applied to the gradient sequences of the second order filter
coefficients easily finds the frequency of the sinusoids and
latches onto it. Figs. 5 and 6 present the variable frequency
detected during processing and Fig. 7 shows the two pairs of
coefficients of the second order components of predictor filter H
in (1), which adapt to the two disturbing sinusoids. As can be
seen in this figures there exists an initial period of adaptation for
the FL.S algorithm, but this does not extend to further speechless
intervals since initial conditions are set in the preceding speech
periods.

During speech intervals the algorithm using narrow
band Notch filters is used to extract the noisy sinusoids out of
the signal and at the same time to keep track of the noise
frequencies with the help of the offset filters in (6). Figures 5
and 6 show how the two chirp signals are tracked during these
intervals . Parameter € and the offset in (6) and (7) were equal to
0.1 and 40 respectively. There are moments in which the
frequency of the noise sinusoids is lost due to the frequency
content of the speech signal, but since speech pauses in which
the adaptive algorithm relatches onto the sinusoids are frequent,
this is not very damaging. Most of the time as can be seen the
algorithm performs very well. )

Fig.7 shows the separation of the roots of the predictor
filter in Fig. 1. The FLS algorithm applied to the gradient
sequences of the second order filter coefficients performs fast
and well, and as can be seen the a,, coefficients go to 1,
signaling the presence of a sinusoid, whereas the a,,, coefficients
indicate its frequency according to (2).

Comparing figures 2 and 4 one can ascertain the quality
of noise removal. The output in Fig. 4 was audio tested and

- proved to be quite satisfactory.
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Fig.3 : two chirp signals added to the initial speech signal to

result into a noisy signal
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Fig.5 : frequency of the first chirp signal as detected by the FLS
and the algorithm using narrow band filters

2200 T

: i & & 3

detected frequency of second noise sinusold

§

1 L

1.5 2
nor. of samples, 8192 samples = 1 sec.

Fig.6 : frequency of the second chirp signal as detected by the
FLS and the narrow band filter algorithm
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Fig. 7 : pairs of coefficients of the prediction filters latching onto
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algorithm is applied




