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Résumé

Les algorithmes qui déterminent le meilleur choix de
quantificateurs pour un critére “débit-distorsion” dans
un schéma de compression d’image par transforinée
sont souvent congus pour des transformations orthog-
onales. Pour les utiliser avec des transformations
biorthogonales, des précautions sont a prendre: cela
nous conduit & étudier la non-conservation de I’énergie
pour un banc de filtres biorthogonal et a étudier les
performances “débit-distorsion” d’un schéma de com-
pression de référence pour plusieurs transformations
biorthogonales. Une méthode de normalisation des fil-
tres est proposée, qui permet d’utiliser simultanément
une transformation Dbiorthogonale et un algorithme
“débit-distorsion” de fagon optimale ou presque.

1 Introduction

While most of the transforins used in signal process-
ing are orthogonal, some biorthogonal transforms have
been introduced in the last few years, among which the
most famous are the biorthogonal wavelet transforms.
Orthogonal transforms have some nice properties, such
as energy preservation, that are used e.g. in quanti-
zation procedures and bit allocation algorithms which
optimize the system in a rate-distortion sense. These
properties make the orthogonal transforms very attrac-
tive, but in the case of dyadic wavelets, orthogonality
is non-compatible with phase-linearity, which is often
required too. Thus it is desirable to be able to use si-
multaneously biorthogonal wavelets and rate-distortion
algorithms.

In this paper we discuss this from an experimental
point of view: this completes the theoretical approach
presented in [2]. We observe the practical lack of an en-
ergy preservation property, discuss it with reference to
the theoretical results, and propose a way to improve
the quality of wavelet filter banks from this point of
view without changing the other properties of the filter
bank. This allows to use simultaneously biorthogonal
transforms and rate-distortion algorithms yielding re-
sults very close to optimuin.

Abstract

Algorithms which determine the best set of quan-
tizers with reference to a “rate-distortion” crite-
rion in a transform coding scheme are usually de-
signed to deal with orthogonal transforms. When
such algorithms are used with biorthogonal trans-
forms, the non-orthogonality of these transforms might
have to be taken into account: We study the non-
orthogonality of biorthogonal transforms with refer-
ence to energy preservation and then the behaviour of
different biorthogonal transforms in a realistic trans-
form coding scheme for image compression. We pro-
pose a simple filter gain normalization technique which
lets us use “rate-distortion” algorithms with biorthog-
onal transforms and yields results very close to opti-
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Figure 1: Example of a wavelet filter bank.

2 Rate-Distortion Algorithms for
Transform Coding

We consider wavelet filter banks like the one in Fig-
ure 1. The analysis part consists in filtering and dec-
imating the signal in each subband and in iterating
this processing on the signal in the low-pass band. The
quantization part is modelled by the addition of a quan-
tization noise, whatever the algorithm used might be.
The synthesis part consists in upsampling and filter-
ing the signal in each subband and in adding all the
subbands. We consider perfect reconstruction (PR) fil-
ter banks: Without any quantization error, the recon-
structed signal is the original signal, up to a delay. Such
PR filter banks may be orthogonal or not. In the latter
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Figure 2: Predicted (dashed) and observed (solid) rate-
distortion curves for biorthogonal Vetterli-Ilerley 24-20 filter
bank [7], a filter bank which is far from orthogonality.

case, we call them biorthogonal filter banks. We use 1-
D notations, but the N-D extension is straightforward.

We can sum up now the principle of rate-distortion
algorithms [6]. The problem consists in choosing the
quantizers for each subband. This choice is made in a
rate-distortion sense. For all possible quantizers and for
all subbands rates and distortions are computed. The
algorithm attempts to choose the best combination in
a rate-distortion sense [6]. For complexity reasons it is
necessary to choose the best set without reconstruct-
ing the image. The resulting reconstruction error has
to be computed through adding the subband distor-
tions. This is true when the transform is orthogonal
but untrue in the case of a biorthogonal transform. Fig-
ure 2 demonstrates the difference the PSNR computed
as the sum of the subband distortions and the observed
PSNR. The difference is easy to see. In addition the
choice of the set of quantizers is clearly sub-optimal,
because an optimal choice would not have lead to a de-
creasing curve (between rates 0.8 and 0.85)! This rate-
distortion curve shows that a further study is necessary
before using rate-distortion algorithim with a biorthog-
onal filter bank.

3 Biorthogonal Filter Banks and
Energy Preservation

Let us summarize briefly the theoretical results on
biorthogonal filter banks and energy preservation as
obtained in [2]. These results hold for parallel filter
bank formulation. The application to wavelet iterated
filter banks is done by considering an equivalent filter
bank.

There are two approaches to this problem. The first
one consists in computing bounds which control the

energy preservation of any signal. The second one con-
sists in computing the energy preservation gain for a
class of signals defined by its power density function.

3.1 Computing general bounds

For rate-distortion algorithms we assume rate and dis-
tortion to be additive over the subbands [5, 6]. In other
words, we want the sum of the subband square errors
to be close to the reconstruction square error. That
means that there exist two constants A and B, close to
1, so that, whatever the quantization might be,
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where ¢ denotes the reconstruction error (in the time
domain), ¢; the quantization error in the subband j,
and M the total number of subbands.

We are able to calculate A and B by considering
the reconstruction error in the frequency domain (cf.
Fig. 1),

M-1
B(w) = Y C(Mw)Gj(w). (2)

The corresponding energy is given by,
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where we introduced the operator

S{w) = (Si]'(w))()gisM—l,OSjSM—l (4)
. 1 M=l w + 2kw L [w+2km
Si(w) = 37 2_ Gi <T) G (T) (5)

k=0

Then the bounds A and B holding for any signal
are given by the infimum and the supremum of the
spectrum of S [2].

3.2 The white noise case

In the particular case of a white noise model, the ex-
pectation of the error turns out to be very simple,

M-1

Z N ||Gll*. (6)
k=0

This is just a weighted version of the distortion to be
taken into account in the orthogonal case. However it
is possible to make all weights ||G]|? equal, which still
allows to use the rate-distortion algorithm as a “black
box”.

The basic idea we propose follows. When designing a
two-band biorthogonal filter bank, one can always mul-
tiply the analysis low-pass-filter and the synthesis high-
pass filter by a given scalar A and divide the other filters



by A. This does not change any of the properties of the
filter bank i.e. perfect reconstruction, smoothness of
the iterated filter (regularity), flatness, frequency se-
lectivity, coding gain,etc. However this scaling changes
the non-orthogonality. When considering an iterated
filter bank, we will optimize the normalization scalar
for each cell. We want all the filters of the equivalent
parallel filter bank to have the same energy.

Let us provide the formulation for the proposed
scheme. We consider a biorthogonal two-band filter
bank with a synthesis low-pass filter Gy and a synthesis
high-pass filter G; and a J-times iterated filter bank.
Let wy,...,u;41 denote the energies of the synthesis
filters of the equivalent parallel filter bank. Let the it-
erations be done with normalization scalars A;...A; .
We obtain:
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The choice of the normalization scalars is then
straightforward,
Uy
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In practice the A values are always similar to each other .

along the subbands. Then the equivalent parallel syn-
thesis filters have the same energy: as the reconstruc-
tion error is theoretically the subband distortion with
a gain, it is easy to be predicted.

4 Further analysis of rate-distortion
curves

The results of the previous section are useful in analyz-
ing the use of rate-distortion algorithms with biorthog-
onal transforms. In the following experimental analysis
we will use the algorithms presented in {3, 4], with Lena
256, scalar quantization, Huffimann lossless coding, and
30 quantizers available.

The normalization procedure is efficient. This is de-
picted in Figure 3 showing that the resulting PSNRs
are much better than the results in Figure 2 where the
proposed scheme is not used (note that both curves
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Figure 3: Predicted (dashed) and observed (solid) rate-
distortion curves for the Vetterli-Herley 24-20 filter bank
with an optimal choice of normalization scalars.

are parallel). The observed curve is then an increas-
ing function, and the prediction looks more accurate.
Assuming a white noise model, the prediction would
be perfect up to a simple gain. As the bit rate in-
creases, the prediction comes closer to this model.
Such parallel predicted and observed rate-distortion
curves also arise with other examples (after normaliza-
tion) such as Onno’s biorthogonal wavelets [3]. With
“near-orthogonal” [2] wavelets, the optimal normaliza-
tion is not even needed, as we saw with Burt-Cohen-
Daubechies 5-7 filter bank [1]. Both low-pass filters
have very similar frequency responses: Intuitively we
may say that the filter bank is nearly-orthogonal. With
4 iterations the bound B is 1.23. In the worst case
(which is not realistic at all) the resulted difference
in PSNRs might be 2 dB. In practice the difference
between predicted and observed PSNRs is negligible
(0.03 dB).

The parallel curves in themselves self do not prove
that the use of the rate-distortion algorithm in the
subband domain is optimal with the corresponding
biorthogonal transforms. It only proves the quality of
the prediction for some sets of quantizers. Other sets of
quantizers may provide worse results than the chosen
ones in the subband domain while providing better re-
sults in the reconstruction error sense. Such behaviour
would not be reflected in the curves of Figure 3. If we
want to know whether the chosen set of quantizer is the
optimal one, we have to compare it with all the possible
ones. Owing to the large number of combinations in-
volved, such an exhaustive comparison is not practical.
Therefore we chose randomly selected sets of quantiz-
ers, and we compared the resulted reconstruction er-
rors. This experiment is depicted in Figure 4. Each
cross corresponds to a random set of quantizers. In
few cases they actually provide better results in terms
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Figure 4: Observed rate-distortion curve for the Vetterli-
Herley 24-20 filter bank after optimized normalization. The
crosses correspond to other chiolces of quantizers. The
crosses above the curve are due to the sub-optimality of the
rate-distortion algorithm but not to the non-orthogonality
of the transform.

of reconstruction error, which means sub-optimality of
the set selection algorithm. When one has a closer look
to the predicted and observed PSNRs for these points
above the curve, two kinds of such situations are to be
observed:

1. The sub-optimality is due to the non-orthogonality
of transforms, hecause the predicted PSNR of the
chosen set is higher than the one of the random
set, while the observed PSNR. of the randomn set
is higher. However for such cases the difference is
very small, less than 0.1 dB. An example of this
situation has label 1 in Figure 4.

2. The sub-optimality is due to the sub-optimality of
the rate-distortion algorithms. Even in the orthog-
onal case the practical rate-distortion algorithms
may be sub-optimal, because it cannot test all pos-
sible quantizers combinations. For such cases the
sub-optimality of the chosen set has nothing to do
with the use of a biorthogonal transformn. When
the difference between the chosen and the random
sets of quantizers is high (e.g. 1 dB or more), this
is due to this phenomenon. Examples of this situ-
ation have label 2 in Figure 4.

We may conclude that practically the result of the rate-
distortion algorithm in the biorthogonal case is as good
as in the orthogonal one: When the optiinal combina-
tion of quantizers is selected in the sense of maximizing
the predicted PSNR for a given bit rate, the combi-
nation is also optimal (or very close to optimum, e.g.
0.05 dB) in the sense minimizing the reconstruction er-
ror for the given bit rate.

5 Conclusion

We have discussed the behaviour of the rate-distortion
algorithm for biorthogonal transforms. Depending on
the filters used, the rate-distortion algorithm can be far
from optimum. However, through the normalization
scalars optimization, we provided a simple way to make
it very close to optimum.

A discussion on the orthogonality criterion may fol-
low: Should we look for a good transform among the
orthogonal transforms?

o For stationnary signals the optimal transform is
the Karhunen-Loeve transform, which is orthogo-
nal. However images are non-stationnary.

o For the use of rate-distortionalgorithms energy
preservation may be needed. Our study shows
that under certain conditions, rate-distortion al-
gorithins may be used optimally (or close) with
biorthogonal transforms.

The discussion is still open but this work on rate-
distortion optimality extends the application field for
biorthogonal transforms.
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