QUINZIEME COLLOQUE GRETSI - JUAN-LES-PINS - DU 18 AU 21 SEPTEMBRE 1995

1065

Design Automation in Digital Signal Processing:
synthesizable VHDL models for rapid prototyping

Dequn Sun, Hans Peter Amann, Alexandre Heubi, Fausto Pellandini

Institute of Microtechnology, University of Neuchétel
Rue de Tivoli 28, CH-2003 Neuchitel, Switzerland
sun@imt.unine.ch

RESUME

Cet article présente un exemple d'implémentation matérielle
complete d'un filtre numérique en treillis RIF-RIL Des outils
CAOQ ont été utilisés avec des modeles VHDL synthétisables
optimisés pour des applications basse consommation du
traitement numérique du signal. Sur la base de cette exemple,
des comparaisons ont été effectuées entre la conception
manuelle et une approche CAO moderne. Ce travail confirme
les avantages de cette seconde approche qui reste indépendante
de l'outil de CAO utilisé, de la plateforme informatique et de la
technologie. De plus, l'accés & une implémentation matérielle
wés rapide est assuré méme A des personnes peu expérimentées
en conception VLSI. Des implémentations en différentes
technologies pour ASICs et FPGAs ont été comparées.

1. Introduction

In modern design methodologies for electronics, top-down
approaches using at many steps CAD tools, become more and
more common. For several reasons (regularity, genericity, etc.),
digital signal processing (DSP) is a field where this method can
be brought to profit in a very efficient way.

Starting from high-level descriptions and passing through a
resource-allocation and scheduling phase, a set of generic basic
elements is selected, instantiated and interconnected. Using the
corresponding descriptions in the form of executable models,
e.g. written in IEEE's standard VHSIC Hardware Description
Language VHDL, the subsequent hardware implementation
steps down to the final ASIC or FPGA can be done
automatically, and hence accelerated in an important way. The
loose in efficiency — power consumption, Si area, max. clock
frequency, etc. — can be corrected later, once the first
implementation has proven the feasibility.

The aim of the present paper is (i) to show the pratical
feasibility of the proposed design approach, and (ii) to compare
hardware implementation results of a particular DSP ar-
chitecture, called IMT-low power (I{MT-Ip), obtained by full-
custom ASIC design and automatic generation of standard-
cell/netlist ASICs and FPGAs. Comparison criteria are the
design time, ease of propagation of modifications, consistency
of documentation, power consumption, cost, silicon area, and,
most important, the ease of use for (non-specialised) designers.

The paper is structured as follows. We first draw the design
flow from top-level DSP specifications down to hardware (§2).
Next, we introduce the IMT-lp architecture (§3) and the

ABSTRACT

This paper presents a complete hardware implementation
example of a digital lattice FIR-IIR filter, using multiple CAD
tools and basic synthesizable VHDL models optimised for low
power consumption DSP applications. The example serves for
comparisons between traditional full-custom design and
modern, automated design schemes. The present paper
confirms the advantages of the automated design approach that
provides a very fast implementation method, design tool and
platform portability, technology independence and hardware
implementation access to people with limited knowledge in
VLSI. As a secondary result, a comparison between im-
plementations in several ASIC and FPGA technologies is
provided as well.

implementation example used: a lattice FIR-IIR digital filter
used in a hearing aid application developed in-house, and
present problems we encountered during the VHDL modelling
phase (§4). The results are discussed (§5) and the conclusions
drawn.

2. Design flow

Our design flow leads from high-level filter specifications to
the final chip (figure 1). While the upper part is specific to our
DSP application, the lower part has a more general
signification.

2.1 DSP specific operations

A DSP application depends on four elements that are: (i)
specifications, (ii) algorithm, (iii) target hardware architecture,
and (iv) corresponding algorithm-to-architecture mapping rules.
It can be shown that certain classes of DSP applications can be
implemented with a relatively small set of generic hardware
elements, and application dependency is limited to high-level
parameters: (i) number of instanciations, (ii) parameter sets for
basic building blocks, (iii) interconnections, and (iv) controller
unit(s). Therefore, this kind of application is particularly well
suited for an automated design flow.

As shown in the upper part of figure 1, DSP people working
on algorithms and architectures can use their favourite tools to
define the functionality and parameter sets of the generic basic
building blocks. For individual applications, a resource
allocation and scheduling scheme is used to determine the
parameter sets mentioned above, while referring to the list of
available resources.

1066
, dL
] . 4
algorithm /
c DsP architecture
kel specification capture <: dependent rules
1T [
n o
& . 3
resource allocation & resource list =3
scheduling i
- AN S
| 8
) VHDL™) 2
model ©
— library
& QL X
D 3
© FPGA o~ |
é g logic level synthesis ASIC 3
L= L | Technology g 2
E ek tbray | |3
o[a
8 —ZZZZZZZZ@JL =74 =]
z FPGA tool <o] FPeA J b~ | |3
ASIC tool (physical level) A—| [Tasic g
L| Technology g 5
< Library .
FPGA@
ASIC
Figure 1: design flow for the DSP application
2.2 Implementation level

It can be seen that in the lower part of figure 1, the
implementation operation can be performed according to the
following two scenario:

1. Optimum Design: full custom manual ASIC layout,
optimisation for low power, low area, etc. .

II. Fast Implementation: portable high level models,
automatic logic level synthesis, standard cell implementation
on ASICs and/or FPGAs, optimised for short turn-around time,
fast implementation.

The choice depends on the design criteria, essentially on a
balance between minimum design effort (high level of
abstraction, functional description), degree of optimisation of
the final circuit (cost, power consurnption, area), the portability
of the design, etc. . The first approach is well known, and the
particularities of the architecture IMT-Ip have been published
before [1]. Therefore for the rest of the paper, we concentrate
on the second scenario — Fast Implementation — and the
comparison of the final results obtained with the two
approaches.

2.3 Design flow for fast implementation

In a first step, a library of synthesizable VHDL models of
the architecture's base elements has to be established. The
results of the resource allocation and scheduling phase are then
used to create a VHDL netlist instantiating these VHDL library
models with their respective parameters, and to set up the
ROMs. The information on control is also delivered through the
resource allocation and scheduling phase and is used to
generate the controller/sequencer units.

Data is then handed over to a logic-level synthesis tool
where the desired functionality is mapped to base elements
(standard cells) according to the desired target technology. As a
result, a standard cell/netlist representation can be handed over
to a (physical level) CAD tool, i.e. for place & route in ASICs
or FPGAs. The results of both logical and physical synthesis
can typically be extracted in the form of VHDL files, allowing
hence a comparison between the original VHDL files and the
VHDL files resulting from synthesis through simulation.

3. IMT low-power architecture

3.1 Architecture

IMT-Ip is a novel architecture for a large class of digital
signal processing applications (FIR, 1IR, adaptive filtering,
Fourier transformation, etc.), and has been optimised for a very
low power consumption {1].

According to the application problem, the number of base
elements and their combination can vary. Figure 2 shows the
example of a FIR filter using this architecture.

RAM ROM

Sequencer

. Variables of state x(i)
5 RW

Control unit
F—>

Cocfficients a(i)

|

Input

Scalar product processor

Output

Ciock

>

I
Figure 2: IMT-Ip architecture in a FIR filter application

The scalar product processor (or multiplier-accumulator) is
one of the most fundamental operators used in digital signal
processing and has hence been optimised carefully [1].

Exchange

Clock

Figure 3: IMT-lp architecture: the scalar product processor

3.2 VHDL models
Modelling style

In order (i) to keep control over the synthesis process —
important for DSP applications — and (ii) to reduce computation
time, we decided for a modelling style using a very structural
description. In order to keep the models portable, no product
specific libraries have been used.
Particularities

ROM and RAM are usually generated with proprietary tools
at the physical synthesis level. There are no standard memory
cells in the technology libraries available for the tools we used
for logic synthesis: we were therefore forced to build
functionally equivalent blocks of relatively poor efficiency, one
version for standard cell ASICs, a second one for FPGA, the
former in the form of a matrix of 3-state buffers, the later as a
standard behavioural model, both with the ROM contents in a
local VHDL package. Similarly, the RAM model uses a

latch/3-state buffer matrix based structure for ASICs, and a
behavioural description for FPGAs.

The fan-out of the models — while irrelevant for behavioural
models ~ has to be considered for structural ones. We hence
implemented an algorithm that partitions the building blocks
and inserts buffers where needed.

4. Application example

A combined lattice FIR-IIR filter (16 bits, order 8 each) has
been implemented successfully using our approach, both for
standard cell ASICs and FPGAs. The synthesis process has
been executed on SYNOPSYS' Design Analyzer, and the
resulting EDIF netlist passed to physical level CAD tools:
MENTOR GRAPHICS and COMPASS for ASICs, ALTERA
for FPGAs. The functionality of the resulting hardware has
been verified by means of post-synthesis gate level simulations
with SYNOPSYS' VHDL Simulation System VSS and post-
place&route simulations with COMPASS.

4.1 Exemple issue

input loudness [patient | coefficients

g i s T table T —I
kou kp. . s kr kg ko . kys

output
lattice FIR [~ lattice IR P

Fig. 4: lattice filters in a digital hearing aid

Figure 4 shows the block scheme of an all-digital hearing al
developed in our institute. After the pre-amplification, the
digitised input signal is passed to the lattice filters for a
frequency shaping operation. The set of filter coefficients k;
contains information on the patient's hearing defaults as well as
on the predicted input signal intensity [2].

4.2 DSP specification for the lattice filter
For frequency shaping, a traditional lattice structure is used.
Its high-level specification is illustrated in figure 5.

Fig. 5: data flow diagram of lattice FIR-IIR filter

It can be seen that a very small number of arithmetic
operations is needed: multiplication, addition, and delay.

4.3 Resource allocation and scheduling

The IMT-Ip architecture takes advantage of the regularity of
the algorithm to simplify both scheduling and hardware
implementation. Scheduling is organised hierarchically to limit
the processing rate of each module to the strict minimum.
Currently, resource allocation is done by hand [1].

Figure 6 shows the instanciated basic building blocks and
their interconnections in the top-most architectural level of the
lattice filter. It is composed of the following base units:

1NR7
ERVIo
 pu———| BUFM
SEQ_LAT oM
fFo oo ADR a
SEL o g o
oxAre] cK buud
dex ser fiic)
SFFY BUFRW o PP
AFO B
SRI5 qf
S0) s oy x MAC_ARD
oK b3 w2 x
CHRFL e
BUFN go Q"‘“““
| N
N eorp _DHR‘:Q o S — sk so-{ Dluq 1
SoF cx b2 e
s pon se
seial BUFN L BerL
EN
o Feo . S 1 tj:sa
LS abmitHens] o
o 950
o — I
— —3 o
L
WAC_ARD
e E:ur‘" 1 21 B x
ol o o LATCH
WIS AFe T oo o
0 o tH ex soMdep @
BEQ_MAC BUFN o " Lo lao2
ook 2] 22 3
Gk LOAD |4 PIRO se
- Q=
A i setHy TS o ° ochL
samac e Lous | oo t wase
VI —{
£ BUFH Lss
N mac2
o =
>——{ S mameted 0
” Py ulot
..... —
R ouTPUT
—

\

Fig. 6: instanciation and interconnection of basic building
blocks after resource allocation and scheduling

MAC_ARD: arithmetic unit (multiplier-accurnulator

including overflow and rounding control)

ROM: local storage of the filter coefficients

FIFO: first-in/first-out register for delay

PIPO: parallel-in/parallel-out register

LATCH: latch for temporary storage of the
computation results

SEQ_MAC: mac control unit (sequencer)

SEQ_LAT: general control unit (sequencer)

BUF3N: tri-state buffer array

4.4 FPGA implementation

For FPGAs, we concentrated on the feasibility test for a
single implementation. Using ALTERA’s FLEX8000 techno-
logy and MAXPLUS2 software, an FPGA of type
EPF81188AQC208 with a device usage of 91% and a
maximum clock rate of 10 MHz resulted.

4.5 ASIC implementation

The ASIC technologies we selected for the implementations
are (i) csel _lib of CSEM (Swiss Center for Electronics and
Microtechnique), (i) vsc370 of VTI (VLSI Technology Inc.),
(iii) ecpd10 of ES2 (European Silicon Structures), and (iv) czb
of AMS (Austria Mikro Systeme International). In order to
facilitate the comparisons between the different technologies
and between full-custom design and automated standard
cells/netlist methods, 1 um CMOS processes have been used
for all technologies tested.

4.5.1 CNM12 and CSEL _LIB (CSEM)

QOur initial design has been done full-custom with this
technology, and has been re-done using two more design
methods for detailed comparisons:

Full Automatic (FA): automatic logic synthesis using VHDL
models, automatic place & route.

Semi Automatic (SA): entry of the equivalent schematics
using a COMPASS tool, manual mapping of standard cells of
the selected target technology, automatic place & route.

Full Custom (FC): manually designed macro blocks at
layout-level as well as some few elements of CSEL_LIB.

The results after place & route with COMPASS VLSI tools
are shown in table 1.

1068
FA SA FC
chip size (mm?) 3.84 2.13 2.0
nb. standard cells 2443 1305 217
macro blocks - - 4
nb. transistors 24144 12030 10998

Table 1: layout results
The functionality and the performance has been verified by

means of post place&route simulations for all three im-
plementation versions. The results are given in table 2.

FA SA FC |
supply voltage (V) 5 5 5
sampling frequency (kHz) 16 16 16
master clock rate (MHz) 2.3 2.3 1.3!
power consumption (mW) 43 3.7 2.4

Table 2: post-layout simulation results
A comparison of the methods FA and SA using both
standard cells shows that the advantages of VHDL have been
paid by a less efficient use of the silicon and a slightly higher
power consumption for similar performance. Reasons for these
differences might be (i) a non-optimal VHDL writing style, (ii)
logic synthesis tools that can still be enhanced, (iii) standard
cell libraries that are richer for proprietary standard cell pla-
cement tools than for logic synthesis tools and, finally, the
influence of the users experience in the case of SA.
The maximum clock rates depend on several factors:
« delay distribution optimisation
= implementation technology
- quality of place&route tool for both FA and SA
 speed of the standard cells for FA and SA
Using a post-route simulation, we got a maximum clock rate
of 20 MHz approximately for FC (equivalent to 40 MHz in FA
and SA due to the difference in structure). For FA and SA —
and with an optimised delay distribution — we estimated the
maximum clock rate to 33 MHz before routing?.

4.5.2 Other ASIC libraries

Technology independency of the automatic approach makes
the implementation on different technologies very easy. Below,
we give some interesting implementation results for different
technologies (table 3).

vsc370 | ecpdl0 czb csel_lib
chip size (mm?) 693 | 1412 | 6.65 3.84
nb. standard cells 2439 3885 3004 2443
nb. transistors 29808 | 30428 | 28902 | 24144
max clock rate (MHz)| 33 20 40 332

Table 3: layout results with different ASIC libraries
The place&route operations have been accomplished with

COMPASS' VLSI tool for vsc370, and with MENTOR's IC.

STATION for the others. The maximum clock rates have been
obtained by post-synthesis simulation with SYNOPSYS' VSS.
While these results correspond to the current version of our

I'The difference in master clock rates of FC and SA/FA is due to a
slight modification of the intenal MAC structure, and should not
significantely influence the results.

2'The estimation is based on information on the technology as well as
on the analysis of the critical path.

implementation, a more optimal distribution of the internal
delays might lead to important enhancements, estimated
roughly to max. clock rates two times higher.

5, Discussion

The differences between full-custom design and automatic
synthesis based on HDL models can be resumed as follows:

FA SA FC
technology dependency | very low | medium high
tool dependency very low | medium high
fast protoyping FPGA ? -
development time:
buildings blocks medium | medium high
interconnect medium | medium | medium
knowledge VHDL VLSI VLSI
medium | medium | expert
design modifications easy easy difficult
design reuse easy easy, but | difficult
tool related
know-how transfert easy tool very
dependent| difficult
documentation VHDL |schematic| layout+
model schematic
Si: cost / area / efficiency:
FPGA expensive ? -
ASIC medium good | very good

Table 4: discussion
Considering the results of our experiences and the list of
arguments here above, we are convinced that fast prototyping
using high-level models and automatic synthesis tools are well
suited to cover many of the implementation problems in DSP.

6. Conclusions

Considering the growing impact of modern top-down
methods in general, and for DSP in particular, we presented the
results of a comparison between full-custom ASICs and circuits
obtained as a result of automated logical level synthesis (ASICs
and FPGA), starting from high-level VHDL descriptions. While
the method is very convincing for fast implementations — turn-

~ around times from specification changes to prototype FPGA of

half a day are possible — it is less appropriate for more de-
manding applications, where clock frequency, power consump-
tion, silicon area, and price are more important than de-
velopment time. Nevertheless, these methods will get more
importance in the near future, taking profit from further en-
hancements in synthesis tools and richer standard cell libraries.

7. Acknowledgements
This work, funded by MICROSWISS and the Swiss

National Found of Science, has been realised in collaboration
with Sara Grassi, Michael Ansorge, and Peter Balsiger.

8. References

[1] A. Heubi et al., "A Low Power VLSI Architecture for
Digital Signal Processing with an Application to Adaptive
Algorithms for Digital Hearing Aids", Proc. EUSIPCO'94,
Edinburgh, UK, Sept. 1994, pp. 1875-1878.

[2] S. Grassi et al., "A Study of a VLSI Implementation of a
Noise Reduction Algorithm for Digital Hearing Aids", Proc.
EUSIPCQ'94, Edinburgh, UK, Sept. 1994, pp. 1661-1664.

