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RÉSUMÉ

Les Réseaux neuronaux d’un mammifère qui se développent sur
des microélectrodes représentent des transducers qui réagissent avec
modifications de leur environement chimique. Leur réaction, qui
dépend souvent de la substance ou de la concentration, peut servir
de capteur biologique pour detecter les variations au niveau des sub-
stances chimiques. Avec des traitements singaux appropriés, ces sys-
tèmes biologiques peuvent être utilisés comme capteurs biologiques
cellulaires. Dans cette publication, nous avons examiné la réac-
tion dependant de la strychnine et de l’acide N-methyl-D-aspartic
(NMDA) en utilisant des réseaux neuronaux artificiels. Nous avons
étudié les singaux enrigistrés en utilisant la retro-propagation et la
carte autoorganisante de Kohonen (SOM). En utilisant les informa-
tions contenues dans le réseau retro-propagation, nous avons appliqué
FAGNIS (Fuzzy Automatically Generated Neural Inferred System)
pour obtenir les règles fuzzy du système.

ABSTRACT

Mammalian neural networks grown on microelectrode arrays rep-
resent transducers that respond to changes in their chemical envi-
ronment. Their response profile to a great variety of neuroactive
compounds is often substance- and concentration-specific and might
be used as a biosensor for the detection of a variety of chemi-
cal substances. Employing appropriate data processing and analysis,
these biological systems may potentially be used for certain sensory
tasks as cellular biosensors. In this paper, the concentration depen-
dent response of the network for strychnine and N-methyl-D-aspartic
acid (NMDA) are explored, using artificial neural nets (ANN). The
recorded data has been investigated using Backpropagation nets as
well as Kohonen’s self-organizing map (SOM). Using the informa-
tion containing within the trained Backpropagation net, FAGNIS
(Fuzzy Automatically Generated Neural Inferred System) was ap-
plied to obtain fuzzy rules of the system.

1 Introduction

Neural networks from embryonic murine spinal cord tissue
are very sensitive to changes in their chemical environment
of the surrounding culture medium. Their response profile to
a great variety of neuroactive compounds is often substance-
and concentration-specific. Grown on planar multielectrode
matrixes these neural networks can be used as transducers,
to transform the highly sensitive and selective response of
the biological system into electronic signals. These biologi-
cal systems may potentially be used for certain sensory tasks
as network biosensors [1]. In order to recognize and clas-
sify the spatio-temporal action potential patterns, associated
with different conditions, we have tested two different artifi-
cial neural net (ANN) architectures. Those architectures are
able to interprete nerve signal recordings [2, 3]. In this pa-
per1, we have compared an unsupervised learning algorithm
(Kohonen’s Self-Organizing Map (SOM)) with a supervised
learning algorithm (Backpropagation). Additionally, the algo-
rithm FAGNIS (Fuzzy Automatically Generated Neural In-
ferred System) [4] was applied to the backpropagation net-
work to obtain fuzzy rules of the system.

1The work was partially granted by the European Community under
ESPRIT BR #8897 (Project INTER).

2 Experimental Setup

Spinal cord monolayer networks were cultured on transparent
multimicroelectrode plates (MMEPs) with 64 photoetched
electrodes in a central recording matrix. The technique used
for MMEP fabrication as well as for cell dissociation, seeding
and culture maintenance have been described elsewhere [5].
Briefly, MMEPs (5x5 cm) were prepared from 1.2 mm thick
indium-tin oxide (ITO) sputtered barrier glass. The conducting
ITO-pattern of the electrodes radiating from a 0.8 mm2 central
recording area with 4 rows and 16 columns was photoetched
with standard procedures. The impedance of the recording
microelectrode sites was lowered by electroplating a thin layer
of gold on each exposed ITO tip.

Spinal cord neurons were obtained from fetal mice (E14-
15) and cultured on MMEPs according to the methods of Ran-
som et al. [6], with the addition of an enzymatic dissociation
step with papain and DNAse. Approximately 8x105 cells were
seeded on each MMEP. Thus the network develops in a central
adhesion island (typically 1-8 mm2) over the recording area. A
typical low-density culture growing over the electrode sites in
the central recording area of a MMEP is shown in figure 1.

For spike activity recordings the MMEP was mounted
within a stainless steel chamber under 1 ml of condi-
tioned medium. Two carbon-filled silicone elastomere, pressed
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Figure 1 — A neural network of dissociated spinal cord cells
grown on the recording array of a 64-microelectrode culture
plate.

against the parallel ITO output strips, provide the electrical
contact between the amplifier circuit board and the MMEP.

3 Data Acquisition

Electrical activity was recorded via a two-stage, 36-channel
amplifier set. The amplifier bandwidth was usually set at 500
Hz to 6 kHz. Activity was displayed on oscilloscopes and
recorded on a 14 channel Racal direct tape recorder. With
a Masscomp 5700 platform spike data from active channels
were digitized with sampling rates of 33 kHz and filtered.
Actually, a maximum of 14 selected channels can be processed
simultaneously.

The large amount of data from recordings of single action
potential data requires simplification of the data acquisition.
Since clustering of action potentials (spikes) into bursts is a
prominent feature of signal patterns from spinal cord neu-
ral networks, spike trains were integrated into bursts. The
recorded spike data was integrated with a double-integration
method [5]. From the integrated data the main burst variables
(burst maximal amplitude, burst duration, burst interval, burst
period and burst area) were determined.

Most spinal cord networks show native spontaneous ac-
tivity with loosely synchronized low frequency bursting. The
electrical activity of the network can be stimulated respec-
tively inhibited by adding chemical or medical agents to the
culture. The data used were recordings under 6 different con-
ditions: (1) the initial native activity of the cell in the medium,
(2) after addition of 10 ñM strychnine and 5 ñM N-methyl-
D-aspartic acid (NMDA), (3,4,5) after three medium changes,
and (6) the final network state two hours after the medium
changes. Each of the six experimental episodes is associ-
ated with specific spatio-temporal action potential patterns that
must be recognized and classified [5]. As in [5] condition (4)
and (5) are stated as one condition. This is reasonable since
the chemical environment of the cellular network was similar
which has been proved by normal chemical examinations.

The data sets have been recorded at 6 different electrodes
out of 14. Obviously, some electrode sites are more suitable
for the recognition of the concentration than others. This might
be due to the circumstance that some electrodes are contacted
by several different axons and some electrodes only by one.
This may lead to superposed informations within the burst
patterns, whereas the recordings from electrodes contacted by
a single axon display an unequivocal information. Detecting
those microelectrode sites allows a reduction of the complexity
of the processing system and a decrease in the processing
time. In this paper we concentrate on the data set of the most
significant electrode.

In a preprocessing step, the main burst variables (burst
maximal amplitude, burst duration, burst interval, burst period
and burst area) for the integrated data were determined. In
preliminary investigations we used all burst variables for the
training of the ANNs to determine the most characteristic
features within the burst variables. Best results have been
obtained by using training vectors representing burst duration,
interval between two bursts, and the maximum amplitude of
the burst.

4 Kohonen’s Self-Organizing Map

The same vectors as above have been used for the training
of the SOM. The dimension of the map is 7 x 7 neurons.
The obtained map is very well disposed. The SOM offers the
possibility to estimate the conditions on the map.

The trained SOM is shown in figure 2. Each square
represents a neuron. Within the neurons, the distribution of the
conditions are encoded. Each color corresponds to a condition,
whereas the square represents the color of the condition which
hits the neuron most.

(1) native

(2) S+NMDA

(3) change 1

(4) change 2 

(5) change 3 

(6) final 

Figure 2 — Distribution of the conditions using Kohonen’s
SOM. The color of each square corresponds to the condition
which hits the neuron most.

On the lower right hand side the initial native activity (1)
is located. The condition (2), 10 ñM strychnine and 5 ñM
NMDA, is located in the lower right hand side, whereas the
medium changes are situated in the upper third of the map.
Finally, condition (6), the final network state, is located in both
upper corners of the map, whereas most hits are in the upper
right hand side corner.

The distribution reflects the similar results as in [5] where
classical methods have been applied. In contrast to this
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method, the SOM organizes the condition in manner, that fol-
lowing conditions are neighbours, except the final network
state, whereas the method presented in [5] have to cross other
conditions following one condition after the other.

Condition Accuracy

initial native activity 90 %

S+NMDA 78 %

medium change 1 75 %

medium change 2 & 3 72 %

final network state 78 %

total 79 %

Table 1 — Accuracy of different conditions for Backpropaga-
tion. For Kohonen’s SOM. The accuracy has been calculated
using the absolute error.

Even if the SOM is well disposed and generalized the data
very well, the accuracy is 73 %. This is due to the fact, that
some condition overlays others partially. Detailed results for
channel 4 are shown in table 1, where condition (4) and (5) are
stated as one condition.

5 Backpropagation

In a first attempt we have used Backpropagation [7] nets for
the recognition and classification of the patterns associated
with different conditions.

As mentioned above, the training vectors consist of three
components representing the burst duration, the interval be-
tween two bursts and the maximum amplitude of the burst.
From 750 vectors which have been examined for all concen-
trations, approximately one third has randomly been deter-
mined for testing. More precisely, 600 vectors have been used
as training vectors and 150 as test vectors. The small number
of vectors is due to short recording durations.

The best results have been obtained using a net with 3 input
neurons, 10 hidden neurons and 6 linear output neuron. Each
condition corresponds to one output neuron of the net. E.g.
the condition (1), initial native activity, was coded by 0.5 at
the first output neuron and -0.5 at all other output neurons;
condition (2), addition of 10ñM strychnine and 5ñM NMDA,
was coded by a 0.5 at the second output neuron whereas all
other neurons were at -0.5 and so on. In order to calculate the
accuracy, the condition with the highest value at the output
neuron was judged as true. The accuracy for each condition
has been calculated using the absolute error. The learning rate
of the Backpropagation net was 0.001.

Using this architecture, an accuracy of 90 % was achieved
for the most significant microelectrode site (channel 4). The
detailed result using the assumption to state condition (4) and
(5) as one condition is shown in table 2.

Furthermore, the result can be improved by taking a major-
ity decision from all trained channels. Using the outputs for
all microelectrode sites within a certain time slot, several dif-

Condition Accuracy

initial native activity 90 %

S+NMDA 76 %

medium change 1 98 %

medium change 2 & 3 94 %

final network state 94 %

total 90 %

Table 2 — Accuracy of different conditions for Backpropaga-
tion. The accuracy has been calculated using the absolute error
without majority decision.

ferent results will be obtained. Calculating a majority decision
for these results of all microelectrode sites during a time slot,
an accuracy of 96 % has been achieved.

6 Fuzzy Rule Extraction

Feedforward Neural Networks are often considered as black-
box models because it is difficult to extract knowledge from
them in a comprehensible way.

We want to present here the application of the fuzzy rule
extraction to the nets trained with the backpropagation algo-
rithm with the objective of validation of the neural network.
The algorithm used to extract the rules was FAGNIS (Fuzzy
Automatically Generated Neural Inference System) [4]. Only
the main ideas of the algorithm in FAGNIS will be discussed.
We refer to the literature for a detailed analysis. The main ad-
vantage of the algorithm is the possibility to extract Sugeno
fuzzy rules from any network structure.

The fuzzy rules extracted by FAGNIS are the so called
Sugeno fuzzy rules [9] and have the form "IF x 2 Z THEN
y D AxCB", where x is the input of the rule (and of the neural
network), Z is a fuzzy set, y the output of the consequence part
(and of the neural network), A and B are matrices respectively
6Ç3 and 6Ç1. Z is defined by a membership functionñZ .x/.
x 2 Z is the premise of the rule and can be computed by the
application of the defining membership function on x .

The application of the algorithm FAGNIS to the neural net
with a structure 3-10-6 (10 hidden neurons) trained with the
backpropagation algorithm for 500,000 epochs resulted in a
Fuzzy Inference System (FIS) with 108 fuzzy rules. I will
present here only the most important one:

IF Nx D . 0:1 Ä 0:5 Ä 0:3 /

THEN Ny D

0BBBBBBBBB@

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1CCCCCCCCCA

0B@ x1

x2

x3

1CAC

0BBBBBBBBB@

C0:5

Ä0:5

Ä0:5

Ä0:5

Ä0:5

Ä0:5

1CCCCCCCCCA
Since the matrix A is a null matrix, the inputs inside a certain
fuzzy set have no influence on the output. All entries of the
matrix A are zero because there is no change in the response
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of the network inside the fuzzy set (a plateau in the response
of the network): the response of the network is a constant
vector B (e.g. BT D [C0:5;Ä0:5;Ä0:5;Ä0:5;Ä0:5;Ä0:5]
corresponds to condition (1), initial native activity). The fuzzy
set Z is represented here by a vector [0:1;Ä0:5;Ä0:3] that
is located in the center of the fuzzy set. It is a kind of
prototype of the fuzzy set. Since the input values are scaled to
[Ä0:5; 0:5], the prototype can also be interpreted as followed:
burst duration is M E DIU M and interval between two burst
is SM AL L and maximum amplitude of the burst is SM AL L.

The rules extracted from the net indicate that it was trained
to the point where each class is sharply separated from each
other. Since some patterns are overlapping, the network needs
a lot of nonlinear regions to separate a pattern that belongs to
a class but falls into a region of the input space that would
belong alone to another class.

7 Conclusion

In this paper a basic approach for the development of biosen-
sors is presented. Biological neural networks are very sensitive
to changes in their chemical environment. The response of the
neural network is often substance- and concentration- specific.
These biological systems may potentially be used for certain
sensory tasks as network biosensors.

Two different artificial neural nets, Kohonen’s self-
organizing map and Backpropagation, have been investigated
for their usage to detect different concentrations based on the
signals of cultured biological neural networks. Additionally,
the algorithm FAGNIS (Fuzzy Automatically Generated Neu-
ral Inferred System) was applied to the backpropagation net-
work to obtain fuzzy rules of the system.

Both algorithms yield the same result: the conditions can
be detected with a certain accuracy. The Backpropagation
net is able to detect the conditions with an accuracy up to
90 %. The result can be improved using a majority decision
for all channels (96 %). A similar result has been obtained
using Kohonens SOM. Although the accuracy of the SOM
(79 %) is not as precise as the Backpropagation net, the SOM
organizes the condition in manner, that following conditions
are neighbours. The rules extracted from the net indicate that
it was trained to the point where each class is sharply separated
from each other. The network needs a lot of nonlinear regions
to separate a pattern since some patterns are overlapping.

In addition, we have shown that the activity patterns
recorded from some microelectrode sites are more suitable
for the recognition of the concentration than the recordings
from others. With backpropagation as well as with Kohonens
SOM these distinct microelectrode sites can be detected. This
important information allows us to reduce the complexity of
the processing system and to decrease the processing time.

In conclusion, the results, obtained by using ANNs to inter-
pret the electrical activities of a cell culture corresponding to
different episodes are: i) after training the neural net, the eval-
uation of recorded data can be done on-line, ii) microelectrode
sites which are highly correlated to the information about the
concentrations within the recorded signals can be identified,

iii) the recognition can be improved by using the artificial neu-
ral nets responses.
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