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RESUME

Les algorithmes multirésolutionels de codage fractal exposés dans
cet article combinent des transformées fractales et en ondelettes. Ils
permettent d’améliorer les performances des algorithmes classiques
de codage fractal dont ils réduisent les distortions caractéristiques
(effets de bloc et images floues) par un meilleur codage des hautes
fréquences.

1 Introduction

The main idea behind all fractal coding algorithms is to exploit
the similarities present within many natural images: one block
of an image is represented by an affine transform of another
larger block taken from the image itself [1, 2, 3]. The charac-
teristic property of fractal coders is to exploit similarities be-
tween different scales. Wavelet transforms perform multires-
olution decompositions of images, i.e, decompositions of the
original images into subimages at different scales. The trans-
lation of the fractal property in the wavelet transform domain
is straightforward: multiresolution decompositions through
wavelet transforms of fractal coded images reveal strong re-
lationships between subimages at different scales. These rela-
tionships limit the frequency content. Multiresolution fractal
coders introduce degrees of freedom on these constraints.

2 The Fractal Algorithm in the Wavelet
Transform Domain

2.1 Relationships

Fractal coded images are divided into non overlapping range
blocks. Each of the NI% range blocks, j, referred to in the
whole image by a vector,b; € {0, 1/Ng, ..., (Ng—1)/Ng}?,
is associated with an affine transform with scaling factor « ;
and offset §;, and with a domain block whose coordinates are
denotedd;, with d; € {0, 1/Ny, ..., (Np — 1)/Np}*. With
these notations, the image f is expressed as the sum of affine
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ABSTRACT

The proposed multiresolution fractal coders are image compression
schemes that combine wavelet and fractal transforms. They improve
the performance of conventional fractal compression algorithms.
They reduce the characteristic distortions of fractal algorithms:
blocking artifacts and image blurring, by a better coding of high
frequencies.

transformed copies of restrictions of it:
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where x(Np(k — b j)) is the characteristic function of the j
range block and restricts the j'* affine transformation to the
j' range block. Explicit derivation of the relationships be-
tween scales of fractal coded images is obtained by translation
of Equation (1) in the Haar wavelet transform domain. The
obtained relationships show that when multiresolution decom-
positions are performed on fractal coded images, wavelet coef-
ficients at a given resolution m are scaled and shifted versions
of wavelet coefficients at the previous resolution (m — 1), with
a scaling factor proportional to 27". These relationships ex-
plain the resolution independence property of fractal schemes:
if images are decoded at a larger size than the original one,
extra details are added that mimic the real ones. Because the
scaling factors between coefficients of successive scales are
smaller than one, energy in octave subbands regularly de-
creases from the low resolutions to the high ones. The informa-
tion in the high frequency components of fractal coded images
is restricted to be low. When original images contain large in-
formation in high frequencies, fractal coding results in a poor
rendering of high frequency components. Blur, lack of details,
edge and texture degradation become noticeable.

2.2 Frequency Interpretation

By further exploiting the fractal property and its interpretation
in the Haar wavelet transform domain, the conventional fractal
algorithm is decomposed into a low-pass and a high-pass
components, both using the same fractal transform.

The first part reconstructs a low resolution version of the
original image, based on the conventional fractal transform
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followed by a low-pass filter. The low-pass filter reconstructs
the low-resolution image obtained after one iteration of the
wavelet transform. The low-pass part is a contractive trans-
formation and, thus, possesses a unique fixed point: the low-
resolution version of the fixed point of the fractal transform.

In the second part of the fractal transform, the high-pass
information of the image is processed through the combination
of the same fractal transform and a high-pass filter. This
transformation has also a constant term called a condensation
set. The high-pass part is a contractive transformation. With
a careful choice of the condensation set, its fixed point is the
high-pass version of the fixed point of the fractal transform.

The transformation resulting from this decomposition is
indeed contractive and thus has a unique fixed point. With an
appropriate choice of the condensation set, the attractor may
be identical to the one obtained with the conventional fractal
algorithm. The fixed point is decomposed into the sum of a
low resolution image and a detail image.

3 Multiresolution Fractal Coders

3.1 First Multiresolution Fractal Coder

The constraints imposed on images by fractal coders do
not exist within original images. The formulation of the
fractal property in the Haar wavelet transform domain is thus
modified to improve the conventional fractal algorithm. A
new fractal coder is implemented: high frequencies are better
rendered if two different fractal transforms are used inside
the algorithm. The wavelet transform is applied once to the
original image, yielding to a low resolution image and three
detail images. These three detail images are recombined to
obtain a high-pass image. The low-resolution image one fourth
the original size, is coded with a first fractal code. The image
obtained after iteration of this fractal code from any original
image is used to compute a second fractal code to represent
the high-pass original image. At the decoder, the reconstructed
image is the combination of the low-resolution image obtained
with the first fractal code and the detail image obtained with
the second fractal code.

The preliminary results are very promising. A gain of about
4 dB is obtained with the original 128 x 128 “Lena” image.
For larger images (512 x 512 pixels) and when quantization is
introduced, the average gain is of 0.7 dB, for PSNR around 25
dB. The bit rate is slightly increased, from 0.07 bit per pixel
for the conventional coder to 0.11 bit per pixel for the new one.
The visual quality is also clearly improved. Edges and textures
are sharper. More details remain in the coded images [4, 5].

3.2 Extensions

The modification of the fractal coding algorithm may be
generalized to any kind of frequency decomposition.

The generalized multiresolution fractal coder is decom-
posed into two steps. First, a wavelet transform is applied
to the original image. Two subimages are obtained, a low-
resolution one and a detail one. For the low-resolution image,

a first fractal code is computed. For the detail subimage, a sec-
ond fractal code is derived using information from the image
obtained with the first fractal code. The block diagram of the
generalized multiresolution fractal coder is depicted in Fig-
ure 1.

The decoding part iterates the first fractal code to construct
an approximation of the low-resolution subimage. From this
image and the second fractal code, an approximation of
the detail subimage is reconstructed. The coded image is
obtained by a combination of these subimages using an inverse
wavelet transform. The block diagram of the generalized
multiresolution fractal decoder is depicted in Figure 2.

Original __ | wavelet 2 fractal 2
Image T. . T.
images codes
Figure 1 — General block diagram of multiresolution fractal
coders. Each block represents one transform (T.).
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Figure 2 — General block diagram of multiresolution fractal
decoders. Each block represents one inverse transform (T.).

3.3 Results

In the first multiresolution fractal coder described in the
previous paragraph, the low-resolution image is obtained with
one iteration of the Haar wavelet transform. Different coding
schemes exist, according to the number of iterations of the
wavelet transform and the wavelet basis used to perform them.

A second coder uses two iterations of the wavelet decom-
position. Thus, the size of the low resolution image for the
first part of the algorithm is one sixteenth the original size.
Both PSNR and visual quality are improved. For 512 x 512
images, the average gain over the conventional fractal coder
is about 1 dB with an increase in bit rate of only 0.04 bit per
pixel. Edges and textures are better coded. The overall images
are less blurred. When more than two iterations of the wavelet
transform are performed, results in terms of PSNR and visual
quality are improved.

Both new algorithms are easily generalized to any kind
of wavelet basis. All wavelet bases are smoother than the
Haar basis. The resulting coded images present less annoying
blocking artifacts. However, the best wavelet basis in terms of
numerical and visual quality depends on the original image.
For a given image, it also depends on the range block sizes or
the wavelet decomposition.



The results obtained with the multiresolution fractal algo-
rithms are compared to those obtained with the JPEG com-
pression standard. For very low bit rates, i.e., less than 0.1
bit per pixel, PSNRs for images coded with the proposed
coders are larger than those obtained with the JPEG algorithm.
Moreover, the visual differences are clearly significant. Images
coded with the new fractal coders are more natural-looking.
JPEG coded images are really blocky. Some edges are very
straight but others completely disappear, as well as many de-
tails and most of the texture information.

The example depicted in Figure 3 summarizes all these
results. The original 512 x 512 “baboon” image is represented
in (a). It is coded with the conventional fractal coder (b).
For this image, the highest PSNRs are obtained when the
Daubechies wavelet with 20 coefficients is used in the wavelet
transform. One, two, three and four iterations of the wavelet
transform are performed to obtain the images depicted in
Figure 3 (c), (d), (e), and (f), respectively.

4 Conclusion

Multiresolution fractal coders present all the advantages of
conventional fractal coders and propose solutions to some of
their drawbacks.

— Image quality of reconstructed images is good, even for
very low bit rates.

— The characteristic distortions of fractal coders are re-
duced: blocking artifacts are less annoying, images are
less blurred.

— For the implemented conventional fractal coder, the
achievable bit rates are very limited. This range is
drastically increased with the multiresolution coders.

— Since successive steps of the multiresolution fractal
coders correspond to more and more details, these al-
gorithms may be incorporated in a hierarchical scheme
and progressive transmission to adapt to time-varying
channel or display resources.

— Fractal decompression is fast. Decoding time is even
reduced with the proposed schemes.

— For conventional coders, the computational for coding is
very high. It is also high for the multiresolution fractal
coders but is reduced with a proper chioce of range
block sizes and number of iterations of the wavelet
transform.

Future work includes other extensions of the multireso-
lution fractal coders. The two basis blocks of multiresolu-
tion fractal coders are wavelet transform and fractal trans-
form. Only separable wavelets have been considered, either
orthonormal or bi-orthogonal. Other multiresolution decom-
position schemes may considered non-separable wavelets. The
implemented fractal algorithm may also be improved to take
into account domain block isometries or recursive splitting of
range blocks.

Multiresolution fractal schemes are defined by many pa-
rameters: wavelet basis, number of bands and cut-off frequen-
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cies in the frequency decomposition, range block sizes. A thor-
ough study still has to be performed to determine the param-
eters values yielding to the smallest image distortions for a
target bit rate.

Good reconstructed image quality are obtained with mul-
tiresolution fractal coders at very low bit rates where they
outperformed the JPEG standard algorithm, both in terms of
PSNR and direct visual evaluation. Images obtained with the
multiresolution fractal schemes are more natural-looking than
those coded with JPEG. However, coding of the low-pass com-
ponents of image blocks with the JPEG standard is very effi-
cient. The high-pass component of the multiresolution coders
may be incorporated in the JPEG scheme for a better coding
of high frequency components of JPEG images. Alternatively,
the low-pass component of the multiresolution fractal coders
may be replaced by any other compression schemes that per-
form well on low resolution images.
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Figure 3 — “Baboon” image (512 x 512): (a) original im-
age, (b) conventional fractal algorithm (PSNR = 17.87 dB,
0.016 bpp), multiresolution fractal coder with (c) one it-
eration (PSNR = 18.08 dB, 0.029 bpp), (d) two iterations
(PSNR = 18.20 dB, 0.029 bpp), (e) three iterations (PSNR
= 18.39 dB, 0.029 bpp), and (f) four iterations (PSNR =
18.64 dB, 0.029 bpp) of the wavelet transform.



