
A 24 BIT DSP FOR STACK-RUN CODEC †

P. Raffy* , P. Nus** , J.M. Moureaux**

* ISL - Department of Electrical Engineering / Stanford University
 Stanford, CA 94305 - USA
e-mail: raffy@isl.stanford.edu

** CRAN - CNRS / Université Henri Poincaré, Nancy 1
 11, Rue de l'Université, F-88100 Saint-Dié - France

e-mail: nus@cran.iutsd.u-nancy.fr - moureaux@cran.iutsd.u-nancy.fr

† This material is partially based upon work supported by the Ministère des Affaires Etrangères under LAVOISIER's grant (1997).

ABSTRACT
Stack-run is a recent lossless method of compression developped
for low bit rate coding. It plays the same role as the
conventional run length codec, in the sense it also exploits zeros
resulted from quantization. However, stack-run coding
outperforms run length coding in terms of rate-distortion trade-
off, as well as low complexity. In this paper, we propose the
implementation of stack-run codec using a low cost and low
complexity 24 bit processor.

1. INTRODUCTION
Nowadays, the increasing demand for real-time applications
requires the further development of low bit rate compression
algorithms. Stack-run is a lossless method of coding [5] which
appears as an efficient alternative to recent zerotrees. Among the
most desirable features of the stack-run method are independent
subband coding and lower addressing complexity, compared
with a two-dimensional zerotree quantizer. Independency
between subbands may be valued for several reasons including
simplified robustness to transmission channel errors and parallel
encoding and decoding. Embedded or dependent bit-streams
require more complex embedded error correcting and detecting
codes for efficiency. At practically low bit rates, the dependency
between subbands does not appear to be very significant,
allowing independence without much sacrifice in performance.
In contrary, optimal bit allocation can be successfully applied
and the influence of the wavelet coefficients increased or
decreased at different resolutions if desired, depending on the
application. This approach is shown to better preserve high
frequency coefficients than zerotrees [2]. Furthermore, the use of
stack-run coding to commonly used images demonstrates high
performance of wavelet coders, especially for low bit rate
applications (2 dB of PSNR improvement on average over JPEG
[2]). It is noteworthy that there is nothing wavelet-specific about
stack-run. Indeed, it can also improve JPEG or MPEG
algorithms based on the block DCT.
Simulation results using an entropy estimation indicate that
stack-run is PSNR competitive with classical run length using a

very large alphabet. However, run length gives, in this case, poor
results when followed by an adaptive entropy coder. Contrary to
run length, stack-run codes amplitudes and run-lengths using a
symbol alphabet of only four distinct letters so that an
instantaneous and adaptive arithmetic coding can be efficiently
applied. Therefore, its implementation may be of interest in
many compression applications. It is the case for example of
remote applications (like satellite imaging), where complexity
must be as low as possible.
In this paper, we propose an original implementation of the
stack-run codec based on a 24 bit DSP. This architecture
presents several attractive advantages. First, it is a low cost and
low complexity implementation. And second, this approach
ensures flexibility in two ways:
(i) this DSP-based architecture can be easily inserted into

more complex compression schemes based on a DSP
design [3], and

(ii) the proposed structure can either process the encoding
of all the subbands of an image in a serial manner or
can be parallelized to each subband in order to
increase the encoding speed.

Results show that the proposed implementation is very efficient
in term of computational time.
This paper is organized as follows. In Section 2, we explain the
principle of stack-run coding through the construction of the
code using a toy example. In Section 3 we describe the different
features of the proposed DSP-based implementation. Finally, we
indicate performances in terms of computational complexity,
and summarize our major contributions. Note that, the design of
both encoder and decoder are addressed in Section 3.

2. STACK-RUN CODING

2.1. Principle
As runlength codec, stack-run uses two classes of coefficients,
depending on whether these are clusters of zero-valued
coefficients (or runs) or non-zero valued coefficients (referred to
as significant or levels). Every quantized image can be

decomposed into runs and levels. Let us illustrate this on the
following example:

Quantization stream: … 0 0 0 0 0 0 0 -1 0 0 0 0 5 10 0 0 …

This stream can be equivalently represented by:

- - - -- -

7x0 - 1 4x0 + 5 + 10 2x0
run level run level runlevel

Let us introduce stack-run coding. Each run or level can be
represented by a binary stack of 0 and 1. In the first case, runs
contain the number of consecutive zeros. In the second case,
level is the value of the significant coefficient. The sign
information is preserved thanks to symbols { }+ −, . For each
category, run or level, symbols can be arranged from left to right
from the least significant bit (LSB) to the most significant bit
(MSB). This yields:

- - - -

LSB MSB: 1 1 1 1 - 0 0 1 1 0 1 + 0 1 0 1 + 0 1
run level run level level run

 →
�� �� �� ��

Finally, we have a 4-ary symbol alphabet composed of

{ }0 1, , ,+ − . Symbols “0” and “1” are affected to levels and

represent binary values 0 and 1. Symbols “-” and “+“ are kept

for levels and also reserved for runs to replace binary values 0

and 1. Converted on our example, this yieds:

- -

+ + + 1 - - - + 1 0 1 + 0 1 0 1 + - +
run level run level level run�� �� �� �� �� �� ��

 (1)

2.2. Improvements of the code
According to abovementioned rule, we can establish the
following run table:

runs 1x0 2x0 3x0 4x0 5x0 6x0 7x0 8x0

bin.wd 1 01 11 001 101 011 111 0001
τ run + -+ ++ --+ +-+ -++ +++ ---+

At this stage, it is possible to improve the efficiency of this code
by limiting the number of symbols to be coded. This is done for
both classes, runs and levels. Indeed, we notice that it is possible
to drop the MSB of the τ run stream except for runs whose
length expresses as 2 1k k− ∈, N . In fact, it is obviously
impossible to drop, for example, the only one bit of the “1x0”
sequence. In order to distinguish some specific runs, it is
necessary to preserve the MSB for runs whose length is
proportional to 2 1k − . The final run table becomes:

runs 1x0 2x0 3x0 4x0 5x0 6x0 7x0 8x0

bin.wd 1 01 11 001 101 011 111 0001
τ run + - ++ -- +- -+ +++ ---

Let us consider now the level table. According to §2.1, it can be
written as follows:

levels -4 -3 -2 -1 +1 +2 +3 +4
τ level 001- 11- 01- 1- 1+ 01+ 11+ 001+

We notice that we cannot straightforwardly replace the MSB by
the sign information since levels “-1” and “+1” would be then
indistinguishable from the runs “2x0” and “1x0” respectively.
The solution consists first in incrementing by 1 the absolute
value of each level, and second in dropping the MSB. Thus, the
final level table is:

levels -4 -3 -2 -1 +1 +2 +3 +4
τ level 10- 00- 1- 0- 0+ 1+ 00+ 10+

If we consider only one stream composed of runs and levels, this
code is uniquely decodable. However, its efficiency can be
improved by considering two separate streams, τ run and τ level .
This requires some further adaptation in order to get this code be
uniquely decodable.

2.3. Uniquely decodable code
Let us reconsider our example according to the modifications
mentioned in section 2.2.

- - -

+ + + 0 - - - 0 1 + 1 1 0 + -
run level run level level run�� �� �� �� ��

Runs and levels are grouped into two streams, τ run and τ level
which are then individually entropy coded. However, decoding
is impossible because we cannot distinguish the level-run
transition. Indeed, symbols “+” and “-“ are used by both
alphabets. This problem is solved by incorporating the LSB of
each level to the τ run stream. Thus, every last symbol of τ level
is automatically followed by a symbol belonging to τ run . On
our example, this yields:

, , ,

-

, , , ,

-

+ + + 0 - - - 0 1 + 1 1 0 + -
run run level run run level run level run

run level run level level run

τ τ τ τ τ τ τ τ τ
	
� ��

�� �� �� �� �� ��

	
�

 �� ��

Hence, the streams to be transmitted are the following:

τ
τ

run

level

...

...

:

:

 + + + 0 - - 0 1 -

 - 1 + 1 0 +

There exists a dominant sub-alphabet for each stream. τ run is
dominated by “+” and “-“ symbols when τ level has
predominant “0” and “1” symbols. This property is widely
exploited by the use of entropy coding (arithmetic coding) for
each stream.

3. DSP IMPLEMENTATION
In this section, we discuss the proposed architecture for the
stack-run codec. First, we give the choice of the processor and
its memory organization. Then, we explain the proposed data
structure for both run and level codes, as well as the general
organization of the program which takes into account all the
steps of the encoding process given in section 2.

3.1. Choice of the processor and memory
organization
As shown in section 2, stack-run coding does not use any
floating point numbers [4]. This naturally leads us to use a fixed
point processor (like the 56002 from Motorola chosen here).
The main advantage of this family of processors is their low
cost, which authorizes high parallelism, for instance [1]. The 24-
bit format of the chosen DSP is particularly well suited to run
and level data structures (as we will see in the next subsection).
The processor used here has three independent memory fields:
Data X: 64Kx24 bits off-chip RAM,
Data Y: 64Kx24 bits off-chip RAM,
Program P: 512x24 bits on chip RAM.
We store final runs in X and levels in Y. This structure enables
the encoding of 64K runs and 64K levels which is enough for
most applications, but can be easily extended if necessary by
using additional external RAM.

3.2 Data structure
The proposed data structure is detailed in Figure 1. Let us call: T
the field "type" of the data structure, RV (or LV) the "run or
level value", RL (or LL) the "run or level length value", and
RDS (or LDS) the whole run (or level) data structure (24 bits).
The field "run or level value" allows runs of 131,071 zeros
where 131,071 can be also the maximal level value. Note that
since wavelet coefficients are distributed over the range -128 +
127, only 8 bits of this field are needed for levels. But for runs,
we might be to preserve all the bits. Furthermore, the field "run
or level length value" permits to decode easily the effective run
or level value which is obviously variable. It is thus very

important in the whole process, since it always gives the
effective length of the current run or level value. Finally, bit 21
of the structure can be used indifferently as the level sign or the
LSB of next level (as explained in Section 2 for unique
decodability purpose).

Figure 1: 24-bit data structure available for both runs and levels.

3.3 General organization of the program
Encoding: We assume that the initial values are stored in
memory X in the data structure format described in Figure 1.
They are represented in Table 1 and correspond to stream (1) of
Section 2.1. The encoding process follows the progression
described in Section 2. It consists in two steps which yield
respectively table 2 and table 3:

Step1: improve the code as detailed in §2.2,

Step2: incorporate the LSB of each level into the previous run
(see §2.3) and store runs in data X memory and levels in data Y.

In step 1, RL (or LL) is decremented only if RV (or LV) differs
from 2 1k k− ∈, N . In step 2, the transfer of LSB(LV) to bit
22 of the previous RDS leads to decrease LL. Furthermore,
when two levels are following, it is necessary to insert a new run
(RDS) with all bits cleared except bit 22 which contains the LSB
of the next level (see Table 3). Moreover, step 2 separates run
streams from level streams, in order to be transmitted. Note that
at this point, it is easy for any following stage (like arithmetic
coding) to decode the effective run and level symbols of each 24
bit data structure. Indeed, τ run (respectivelyτ level) stream
consists of effective bits of RV (respectively LV) and bit 23.
The effective bits of RV (or LV) are easily decoded thanks to
RL (or LL) which acts as a bit counter.

Decoding: Decoding is based on the same principle as encoding,
so it is briefly described here. The data structure (represented in
Figure 1) is unchanged. The initial data are now those
represented in Table 3. Step 1 and step 2 (respectively duals of
encoding step 2 and step 1) are performed on these data to
transform Table 3 in Table 2, and finally in Table 1. RL and LL
counters are incremented instead of being decremented (as in
the encoding). Bit 22 of a run is transfered to LSB of the
following level after a left shift of its value. Furthermore, a
cleared RL in a run means two levels are following. In this case,
bit 22 of the run is incorporated into the next level and the run
data structure is cancelled.
Both encoding and decoding algorithms have been programmed
in assembly language on a DSP56002 (from Motorola). In the
next section, we show performance of the proposed
implementation.

4. PERFORMANCE EVALUATION
The encoding and decoding programs require respectively only
96 x 24-bit words and 84 x 24-bit words. Thus, they can be
easily stored in Program P memory field of the DSPs.
The computational complexity depends essentially on three
parameters: v, n, and r, where:
- v is the run or level value (RV or LV),

- n is the number of bits of v equal to 1 (when

N ,12 ∈−= kv
k

),

- r is the position of the first bit of v equal to 0 (when

N ,12 ∈−≠ kv
k

).

Results of encoding are summarized in the following table:

12 −= kv 12 −≠ kv

run O(4n+17) O (4r+21)

level O (4n+17) O (4r+19)

Table 4: Computational complexity of encoding (in cycle
instructions) for step 1.

2122 17 16 023

type
run = 0
level=1

run or level length value

0 (level >0), 1 (level<0)level signif level :
if run : LSB of next level

run or level value

Results of decoding are summarized in the following table:

12 −= kv 12 −≠ kv

run O(4n+16) O (4r+24)
0=v 0≠v

level O(21) O (25)

Table 5: Computational complexity of decoding in cycle
instructions for step 2 (runs and levels). Note that the total
computation time for decoding must take into account additional
20 cycle instructions for each couple (run, length) stored in
Table 3 (step 1).

Let us consider now the encoding of a quantized image with R
runs and L levels. The total number of cycle instructions for this
image is expressed in)2422(lrLORO levelrun +++O , where

runO and levelO are values read in Table 4, r is the number of
run/level transitions and l the number of level/level transitions.
Experiments performed on a bench of natural images such as
Lena and Barbara have permitted to estimate parameters R, L, r
and l. Given an image size of 512x512 pixels and 4 levels of
decomposition, we found an average processing time of 5.3 ms
for the larger subband (256x256 pixels). In a parallel
architecture (1 DSP per subband), this time represents the total
encoding computation time for the initial 512x512 pixels image.

5. CONCLUSION
An implementation based on a 24 bit DSP well suited for stack-
run codec has been presented. The proposed architecture is low
cost and allows low computational processing time, as well as
interesting flexibility. Its efficiency is based on a well suited data
structure to represent runs and levels. Its versatility leads the
architecture to be adapted to the image characteristics. Finally,
the proposed structure can be easily parallelized, or/and
integrated into a more general design dedicated to efficient
image and video coding.

REFERENCES

[1] P. Nus , "Traitement numérique du signal - Applications
du processeur spécialisé DSP56002", Publitronic -
Elektor Ed., ISBN 2-8661-091-1, 1998.

[2] P. Raffy, M. Antonini, M. Barlaud, "A new optimal
subband bit allocation procedure for very low bit rate
image coding", IEE Electronics letters, vol. 34, issue 7,
p. 647, april 1998.

[3] P. Raffy, P. Nus and JM. Moureaux, "A parallel DSP
architecture for a new and high performance variable
rate coder", The International Conference on Signal
Processing Applications and Technology (ICSPAT),
Toronto, september 1998.

[4] S.V. Ramaswamy and G.D. Miller, "Multiprocessor
DSP architectures that implement the FCT based JPEG
still picture image compression algorithm with
arithmetic coding", IEEE Transactions on Consumer
Electronics, vol. 39, 1, pp. 1-5, february 1993.

[5] M.J. Tsaï, J. Villasenor and F. Chen, "Stack-run image
coding", IEEE Transactions on Circuits and Systems for
Video Technology, vol. 6, pp. 519-521, october 1996.

bits 23 22 21 20 19 18 17 16 15 … 3 2 1 0

R: 7X0 0 0 0 0 0 1 1 0 0 … 0 1 1 1

L: -1 1 1 0 0 0 0 1 0 0 … 0 0 0 1

R: 4X0 0 0 0 0 0 1 1 0 0 … 0 1 0 0

L: +5 1 0 0 0 0 1 1 0 0 … 0 1 0 1

L: +10 1 0 0 0 1 0 0 0 0 … 1 0 1 0

R: 2X0 0 0 0 0 0 1 0 0 0 … 0 0 1 0

L: -7 1 1 0 0 0 1 1 0 0 … 0 1 1 1

Table 1: Example of the initial stream in the data structure
format detailed in Figure 1.

bits 23 22 21 20 19 18 17 16 15 … 3 2 1 0

R: 7X0 0 0 0 0 0 1 1 0 0 … 0 1 1 1

L: -1 1 1 0 0 0 0 1 0 0 … 0 0 0 0

R: 4X0 0 0 0 0 0 1 0 0 0 … 0 0 0 0

L: +5 1 0 0 0 0 1 0 0 0 … 0 0 1 0

L: +10 1 0 0 0 0 1 1 0 0 … 0 0 1 1

R: 2X0 0 0 0 0 0 0 1 0 0 … 0 0 0 0

L: -7 1 1 0 0 0 1 1 0 0 … 0 0 0 0

Table 2: Stream 1 = initial stream (see Table 1) after the first
step (bits having changed are boldface typed).

bits 23 22 21 20 19 18 17 16 15 … 3 2 1 0

R: 7X0 0 0 0 0 0 1 1 0 0 … 0 1 1 1

L: -1 1 1 0 0 0 0 0 0 0 … 0 0 0 0

R: 4X0 0 0 0 0 0 1 0 0 0 … 0 0 0 0

L: +5 1 0 0 0 0 0 1 0 0 … 0 0 0 1

R 0 1 0 0 0 0 0 0 0 … 0 0 0 0

L: +10 1 0 0 0 0 1 0 0 0 … 0 0 0 1

R: 2X0 0 0 0 0 0 0 1 0 0 … 0 0 0 0

L: -7 1 1 0 0 0 1 0 0 0 … 0 0 0 0

Table 3: Stream 2 = stream 1 after the second step (bits of the
final stream are boldface typed).

	numero:
	gretsi: Dix-septième colloque GRETSI, Vannes, 13-17 septembre 1999

