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Résumé — On propose dans cet article un Egaliseur Polynémial au Sens Large (WSPE), dédié aux canaux spéculaires. En se
basant sur la distribution QPSK des entrées, largement utilisée en communications numériques, on développe des WSPE d’ordre
3. On se penche sur des simplifications des WSPE généraux afin de réduire la complexité numérique. Les simulations mettent
en évidence l'intérét des termes cubiques lorsque le nombre de capteurs est faible.

Abstract — In this paper, a novel Wide-Sense Polynomial Equalizer (WSPE), dedicated to linear specular channels, is proposed.
Based on the QPSK distribution of the inputs, widely used in digital communications, up to 3rd order WSPE are considered.
Simplifications of the WSPE are investigated in order to reduce the numerical complexity. Simulations show that cubic terms

give outstanding performance when the number of sensors is relatively small.

1 Introduction

In digital communications, transmitted signals suffer from
distortions when passing through a fading multipath
channel.  These distortions cause adjacent pulses to
interfere with each other, which is known as Inter-Symbol
Interference (ISI). At the receiver, equalization is generally
required to compensate for the effects of ISI. In multiuser
communication systems, equalization is also required to be
effective in reducing Multiple-Access Interference (MAI).

Most of the equalizers, either linear or nonlinear, need
a known pilot sequence transmitted to the receiver for the
purpose of adjusting the equalizer coefficients. However,
there are some applications, where it is desirable for the
receiver to synchronize to the received signal and to adjust
the equalizer without a pilot sequence. Equalization
techniques working without pilot sequences are referred
to as self-recovering, or blind. Other advantages of blind
techniques include: an increase in transmission rate,
better performance for fast varying channels, easier use
for long channel responses, and robustness to loss in
calibration.

Linear equalizers are used in the applications where the
channel distortion is not too severe. Nonlinear equal-
ization of digital communication channels has received a
great attention, but has been mainly iterative and based
on a decision feedback.

The proposed Wide-Sense Polynomial Equalizer
(WSPE) is of block type (non iterative), and is based
on a least-mean-square-error (LMSE) scheme, which
makes it easy to implement adaptively. From the original
measurement, an “augmented’ measurement is generated,
and consists of a Wide-Sense Polynomial (WSP) function
(hence non linear) of the actual measurement. Then,
a linear LMSE equalizer is built with this augmented
measurement, similarly to a Volterra filter. It can be
blind when pilot sequence is not available.

Since there is a high degree of freedom to construct
the WSP measurement, it is necessary to investigate how
small its size can be and, for a fixed size, what kind
of combination or simplification gives the best result.
Based on the knowledge of the distribution of the source
of interest (QPSK in this paper), simplifications of the
proposed WSPE are studied in details in order to optimize
the complexity.

This paper is organized as follows: the problem is stated
and the WSPE is defined in sections 2 and 3, respectively.
Section 4 investigates the improvement on performance
made by WSPE. Performances of different simplifications
are given in terms of Symbol Error Rate (SER) v.s. SNR

in section 5. Section 6 concludes.

2 Problem Statement
The linear baseband observation model is assumed as

y(n) =

where y(n) is a K-dimensional measurement vector,
s(n) is a L-dimensional QPSK signal vector containing
delayed versions of the user of interest, and w(n) is a
K-dimensional noise, a priori non Gaussian, standing for
both background noise and interferences from other users;
A is the K by P array response matrix, B is P by L
matrix describing the specular channel, H = AB is a K
by L matrix, K being the number of sensors, P the number
of paths, and L the maximum length of the paths. More
precisely

A = [0(91)70(92), ceey
=[b],bs, ..., bp]"

ABs(n)+w(n) = Hs(n) + w(n) (1)

a(fp)]

( ) [QSI( )¢2( )""’¢K(9P)a]T
pz[() () b(L—l)]
s(n) = [s(n), s(n — 1),...,s(n— L+ 1)]*



where ¢5(6,) is the response of the kth sensor to the pth

path, b, is the unit impulse response of the channel to the

pth path, p=1,2,..,.P,k=1,2,... K,n=1,2,.... N, N

is the number of samples. Since L is the maximum length

of the paths, b,(L, + 1) = b,(Lp, +2) = b,(L — 1) =0 for

the pth path if its length L, < L. Note that vectors are

denoted with bold face letters, as opposed to scalars.
Model (1) can always be re-expressed as

y(n) +v(n) (2)

where h is the first column of H and where

v(n) = Gt(n) + w(n) (3)

contains the other symbols of s(n). When s(n) is a
i.i.d., E(s(n)s*(n — 7)) = 0, and w»(n) turns out to
be independent of s(n). Next, Gt(n) is the so-called
Inter-Symbol Interference (ISI), where

= hs(n)

= [h,G]
s(n) = [s(n), ¢(n)"]"

Now v(n) is the sum of background noise, interferers from
other users (MAI) and ISI.
Traditional LMSE approaches consist of finding a

weight vector, f,,.., which leads to an estimate
H

$(n) = fmsey(n) (4)
yielding the Least Mean Square Error (LMSE), that is

Frse = Mfiﬂ E(|f" y(n) — s(n)[?). ()

WSP Equalizers, proposed in this paper, are based on
an stacked observation in the form of a well chosen
polynomial of both y(n) and y*(n), hence the name of
wide-sense polynomial. It gives a better equalization than
traditional linear equalizers, because of their nonlinear
inputs.

3 WSPE

To build the WSP observation, up to 3rd order polyno-
mials in y(n) and y*(n) are considered. Denote u ® v
the Kronecker product between two vectors, and u @ u
the Kronecker product without redundancy of a vector
with itself (also called symmetric Kronecker product); by
extension, also denote y'? = y @ ... ® y the ith iterated
symmetric Kronecker product [1]. Now let

Y(n) = stack [y (n) ® 3y’ (n)] (6)

1<i+5<3

where “stack” denotes the operator stacking vectors one
below the other. (6) produces up to third order WSP
observations. Thus, the WSPE is defined as:

Frnse = Mfin E(f"Y (n) — s(n)]?) (7)

H

$(n) = frn Y(n) (8)

Remark 1. Note that, on purpose, no cross terms
involving different time lags have been introduced. It is
thus a purely spatial WSP function that has been used.
More precisely, one may think of replacing (6) by

Y (n;m,m) = s<ticl<<3 [y? (n -7T)® y®j*(n —72)] (9)

Y (n) = stack[Y

71,72

(n; 1, m2)] (10)

in order to extract more information from original mea-
surements, where (r,72 = 0,1,...,7), T being an ad-
justable parameter. It turns out that this is in general
rather complicated and not of practical value, because of
the huge size of the matrices involved. In addition, matrix
Ry can also be ill conditioned or even rank deficient, as
it would be the case for 2.2.d. QPSK signals.

Remark 2. Furthermore, it can also be shown that
if the noise covariance matrix, in the spectral domain,
satisfies:

R,(v) = oZ(v)J (11)

where J is a constant matrix, space and time decouple in
the expression of the Space-Time Matched Filter (STMF).
In fact, using the inversion lemma, one gets for the linear

case from
y(v) = h(v)s(v) + v(v) (12)

that §(v) is proportional to h" (v)R;* (v)y(v). For a noise
covariance of the above type, §(v) is thus proportional to
h"(v)J'y(v). This shows that the spatial equalizer J~*
and the time equalizers h} (v) can be applied separately.
However, to make this simplification applicable for WSP
equalizers, we need the above property to be satisfied for
WSP observations (19). If this is the case, there is no need
for cross space-time terms as suggested in Remark 1.

3.1 Selection of pertinent terms

For the sake of clarity, consider temporarily a simpler
(scalar) case below, without loosing the generality of the

reasoning: y(n) = hs(n) + v(n) (13)

where y, h, v are now all scalar. One possible Y (n) is the
9 x 1 augmented observation vector:

[y(n), v* (n), v~ (n)y” (n)]"
[v*(n), ¥** (n ): u(n)y” (n)]* (14)
[y* (n), y(n)y** (n), v*(n)]"
For this WSP observation, based on the QPSK property
of both signal s(n) and noise v(n), we have the relations
given in table 1.

In this simple scalar example, f has 9 components, and
satisfies the normal equation:

Y(n)=

' Z33 Z33 g1 T
Z3z3 Iy Z33 gs | = | 72 (15)
Z33 Z33 I3 gs T3

where Z,, , denotes the m x n zero matrix, and where

A1 Az Ars fi h
D= | AlgAnAs, |, gi=| fo [,ri=| A% |,
A3 Asg Ags f3 h2h*



E(s(n)s*(n)) =1 E(v(n)v*(n)) =T,
E(s%(n)) =0 E{v*(n)) =0
E(s3(n)) =0 E(v3(n)) =0
E(s?(n)s*(n)) =0  E{v*(n)v*(n)) =0
E(s*(n)) =1 E(v(n)) = M,
E(s3(n)s*(n)) =0  E{v¥(n)v*(n)) =0
E(s*(n)s**(n)) =1 E{v*(n)v**(n)) = K,
E(s°(n)) =0 E(v®(n)) =0
E(s*(n)s*(n)) =0  E{v*(n)v*(n)) =0
E(s3(n)s?*(n)) =0 E{v3(n)v**(n)) =0
E(s5(n)) =0 E(v®(n)) =0
E(s’(n)s*(n)) =1  E(v®(n)v*(n)) = Qu
E(s*(n)s**(n)) = 0 E(v!(n)v**(n)) =
E(s’(n)s**(n)) = 1 E(v*(n)v**(n)) = N,
TaB. 1: Relations satisfied when user of interest and
interferers are QPSK-distributed.
A13A120 ] [ fa ] [0 ]
I, = Al A130 |, go=| f5s |, r2=1] 0 |,
| 0 0 Az | | o | | 0]
[ Ay Az A7, ] [ f7 ] [0 ]
[3=| AisA2 A5 |, g95=| fs |,r3=| 0|,
A1s Az Ass Jo 0

and A11 = hh* + FU, A12 = h4 + Mv, A13 = hzhz* + [{v;
Ags = h3h3* + Ny, Ass = h*h° + Q.

It is clear that only the first three entries, namely the
original measurement y(n) and WSP observations y* (n)
and y*(n)y?(n) in (14), are worth considering.

3.2 A simpler form of the WSPE for
QPSK inputs

Since the above conclusion holds true when y, h and v
are changed into vectors or matrices, we can assume from
now on that (6) reduces to the vector below, of size K +

K(K +1)(K +2)/6 + K2(K + 1)/2:
Y (n) = [y"(n), [y’ ()], [y" () @ 9 (0)]"]"  (16)

Because of the property s3*(n) = s*(n)s?(n) = s(n),
satisfied for QPSK distributions, any possible WSP ob-
servation Y (n) arranged as (16) can be expressed as

Y (n) = T'(h)s(n) + T[v(n)] (17)

where T'(+) is a known vector function which returns a big
vector consistent with (16).

Based on (17), the minimization of the MSE criterion
leads to the augmented normal equation:

.fmse = R;,l Ry, (18)
where Ry = E(Y (n)Y"(n))
Ry, = E(Y (n) s(n))

When a pilot sequence is available, (18) can be used
directly. But in most mobile communication systems,
channel identification has been performed in a first stage,
so that H and hence h can be considered as known. Then
Ry, = 02T (h) where o2 is the variance of s, so

fmse = O-.? R;’l T(h) (19)

4 Performance Improvement

As previously seen, the stacked WSP observation aimed at
decreasing the LMSE. In this section, we try to quantify
this improvement. Denote the linear MSE estimation
given by (2) as

s1(n) = Ry R, y(n) (20)
and the other stacked WSP MSE estimation as
s52(n) = [Ryy BT [y" (n)z" (n)]” (21)
R R,
where Ty, = Ryyz Rzy ], R, = RZS . R,y = R,

and z(n) is either one of the two WSP observations in

(16), or both. Their MSEs are

g1 = Rs — RsyR;Rys
€2 = Ry — [RsyRSZ]I‘;zl [R;/FsR:s]T

Now the improvement brought by using WSP observations
can be defined as the decrease in MSE, namely Az =
€1—¢&z. It is always positive or zero and takes the following
general form:

Ae=T% T7IT., (22)

2YsT zyz

where Fzys = [st + Rzngleys]

Loy = (R, — RZyR;RyZ]

The proof is not reproduced for reasons of space. This
result extends that of [2]. We can observe that the
improvement is strictly positive if: (i) z is not too much
correlated with y (otherwise the MLSE is ill-conditioned),
and (ii) =z is enough correlated with either s or y.

5 Simulations

Denote the three kinds of terms of (16) as L01, C30
and C12, respectively. Consider four different types of
equalizers with increasing complexity:

e T1: based on LO1 terms only (traditional LMSE);
e T2: based on L0O1 and C12 terms;

e T3: based LO1 and C30 terms;

e T4: based on the three terms above together.

In order to access some ultimate performance evaluation,
the actual source sequence s(n) is utilized when computing
the equalizer vector, f,, .., in (18). In a second stage, the
Symbol Error Rate (SER) between the actual and esti-
mated source sequences, s(n) and §(n), is estimated as a
function of SNR. This way of computing the performance
is ultimate in the sense that it is optimistic.

The length @, @', and Q”, of equalizers L01, C30,
and C12, are chosen in such a way that the number of
equations is the same (hence the same complexity). The
number of equations is thus K@ for LO1, Q'K (K+1)(K +
2)/6 for C30, and Q" K?(K + 1)/2 for C12.

The transmit filter (pulse shape) is the raised cosine:

cos(mft/Ty)

f(t) = sinc(mt/T;) 1—4522)T2

(23)

where T is the symbol period, and the roll-off factor is
G =0.22.
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Fig.1 55 pure random channels 5
sensors with 255 parameter

Three channels are generated: 1 purely random, and 2
specular according to an urban model.

The pure random channel consists of mere Gaussian
coefficients:

B = randn(K, L) + y*randn(K, L); (24)

The 6-path urban Clarke model has time delays
[0,0,1,2,2,5] in symbol period unit, and amplitudes
[-3,0,—2,—6,—8,—10] in dB.

The antenna array is chosen to be a linear and equis-
paced, with the sensor spacing of half a wavelength of the
carrier. Directions of the other users are drawn randomly
in the range [45, 135] degrees from the end fire.
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Fig.2 50 Clarke random channels 5
sensors with 255 parameters

For all the 3 figures below, performances (in terms of
SER) of equalizers T1, T2, T3 and T4 are plotted in solid,
dotted, dash-dotted, and dashed lines, respectively.

In Fig.1, K =5, and channel taps are drawn randomly
according to (24). TFor equalizer T1, @ = 51. For
combination T2, @ = 9 and @’ = 6. For combination
T3, @ = 6 and Q” = 3. For combination T4, Q = 7,
Q' = 2 and Q" = 2. All equalizers have a system matrix
of the same size, namely 255.

In Fig.2, @Q, @’ and Q" are the same as those of Fig.1,
so as to the size of system matrix, but the channel follows
the urban Clarke model above mentioned.
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Fig.3 200 Clarke random channels 3
sensors with 69 parameters

In Fig3, K =3. @ =23for Tl; @ =3 and Q' = 6
for T2; @ =5 and Q" = 3 for T3; and Q =7, @' = 3
and Q" = 1 for T4. In this last example, the matrix of the
linear system to solve is smaller (size 69 for all equalizers).

These 3 figures show that for pure random channels,
cubic terms always yield an improvement: T1 performs
the worse, and T4 performs the best. On the other hand,
for Clarke channels, performances of the four equalizers
are almost the same for K = 5 sensors; but with fewer
sensors, namely K = 3, combination T4 performs again
the best.

6 Conclusions

This paper proposes a novel WSPE dedicated to linear
specular channels. Under the assumption that all users
are 1.1.d. QPSK, we have proved that only L01, C30 and
C12 terms count, among all the WSP functions of the
observations of at most 3rd order. We have also shown
that cross space-time terms are negligible. Note that if
the signal is not an ¢.7.d. process, we can still decouple the
equalization in space and time domains separately, when
the noise satisfies (11).

Our quantitative analysis proves that WSPE yields a
reduced MSE, compared to traditional linear MSE equal-
izers, both analytically and by computer experiments.
Simulations indeed show that for both pure random or
Clarke channels, the proposed WSPE always outperforms
the linear MSE equalizer when the number of sensors is
relatively small.
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