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Résumé — Cette communication présente un pré-traitement dédié a la tomographie passive océanique. Pour une source unique, |’ estimation
de sa fréquence instantanée permet |’ estimation de la réponse impulsionnelle du canal en présence de trajets multiples. Grace a |’ utilisation
de la transformée de Wigner Ville ou de transformées basées sur un noyau gaussien, des performances équivalentes a celles du filtrage
adapté sont obtenues. Deux outils Temps Fréquence Haute Résol ution sont alors proposés pour améliorer la solution initiale.

Abstract — This communication presents a pre-processing scheme possibly included in the global methodology of passive tomography in an
underwater acoustic channd. For a single source, its instantaneous frequency estimate allows channd impulse response in a multipath
propagation channel. Thanks to the use of Wigner Ville or Radial Gaussian Kernd distributions, performances such as classical matched
filtering are obtained. Then 2 tools for High Resolution are proposed to improve our flow chart.

1. Introduction

The need for mapping an unknown medium has given rise to the

development of several tomographic applications, in the last
decades. In 1979, Munk and Wunsch extended the classical
tomography concept to ocean mapping, proposing what is called
ocean acougtic tomography, that is, use of a measured acoustic
transmission, to determine the ocean temperature field [MUN79] .
Here, advantage is taken from the fact that the ocean is nearly
transparent to acoustic stimuli. By measurements of the stimulus
and the medium response, properties like the temperature field,
sound speed profile, medium geometry or salinity may be
estimated, congtituting what is known by active tomography
[BAGS8S8] . These properties can then be used to accomplish other
related problems such as source localization, by matched-field
processing . Tomographic studies have intensively been developed
in deep or shallow water scenarios, with ranges extending from few
to hundreds of kilometers [DEM97] . Obviously, many practical
advantages can be obtained if the knowledge of the emitted signal
is dispensible, at the receiver, what constitutes the concept of
passive tomography.
Here, the idea is to use opportunity sources of acoustic noise, like
boat engines, anima sounds or other natural aguatic sounds, as
stimuli, without using an active emission given improvements in
civil research area by protecting mamal species from powerful
nuisance signals and in military context which requires a high level
of discretion on the area of operation.

Many tomographic applications proceed in 2 steps, a first step
estimates the channel impulse response from emitted and received
signals then a second step uses this impulse response to solve an
inverse problem to estimate the physical properties of interest.

This communication focuses on the first step in the case of passive
tomography. A first part describes the model of data, then a second
part proposes a flaw chart composed of the association of an
instantaneous frequency estimation stage and a time frequency
detector. A third part presents 2 Time Fregquency tools allowing
High Resolution performances to improve the flow chart of the
second part.

2. Modedl of Data

In this communication, the case of a single source emitted a
signa g(t) in a non-dispersive multi-paths underwater acoustic
channel is considered. Under these assumptions, the channe
impulse response h(t) and the received signa m(t) are modeled
by:

N N
ht)=8 Cid(t-t;)and m(t)=q G s(t-t;)+b(t)
i=1 i=1
where N stands for the number of paths, C; and t; for respectively
the amplitude and the travel time of the i'" path, d for the Dirac
distribution, b(t) for stationnary, white, gaussian (N(0,s?)) noise.

3. Time Frequency Flow Chart for
Channel I mpulse Response Estimation

A theoretical Time Frequency mapping of the recelved signal
m(t) concentrates the power tempo-spectral density around N
trandated in time area centered around the instantaneous frequency
curve of the source s(t). The flow chart we are proposing and which
is detailed in this part is based on the main characteristics of this
Time Frequency mapping. A first stage is dedicated to the
instantaneous frequency of S(t) then a second stage performs a
Time Frequency matched filtering of m(t) with (t).



To estimate the source instantaneous frequency function, a local
maximum is sought on an optimal time-frequency mapping which
deletes the interference terms, without significantly increasing the
spread of the autoterms (RID: Reduced Interferences
Distributions), in the Time Frequency representation. These signal-
dependent time-frequency transforms are based on the optimal
weighting of the ambiguity function by a radially signal-dependent
Gaussian kernel (Radial Gaussian Kernel, RGK) or based on the
optimal weighting of local ambiguity function (Adaptative Optimal
Kernd, AOK) developed by Baraniuk and Jones [BAR93] [JON95]
. Our approach may be biased but is stable over noise and
interferences. The agorithm used to estimate the source
instantaneous frequency function is the following:

- compute the signal-adapted Time Frequency mapping of the
received signal, (RGKn(t,f)),

- for each frequency bin f; , estimate the time of the first local
maximum of the function of time RGKu(t,f;).

The source instantaneous frequency function f; (t) obtained in
this stage is used to estimate the channel impul se response.

For known source s(t), two optimal detectors of (t) in noise may be
used to estimate the channel impulse: the classical matched-
filtering and an equivalent formulation in Time Frequency domain
proposed by Flandrin [FLA88] . If the signa to be detected is
considered as random one and if m(t)=s(t)+b(t) or m(t)=b(t), the
optimal detector is based on the use of the time-frequency
correlation Q between the auto Wigner-Ville of (t) and m(t):
¥

Q= OOWmn(t, f)” Wes(t, f)dtaf
-¥T
In passive tomography, the source s(t) is unknown, but the
instantaneous frequency function f; (t) of s(t) in given by the first
stage, an estimated Wigner-Ville of the source is defined as
follows:

W st f) =d(f - (1)

A sub-optimal detector is proposed by computing the
time-frequency correlation between the auto Wigner-Ville of
m(t) and the estimated Wigner-Ville of the source
(WV (t, f)). The Channe impulse response is estimated by
looking for local maxima on E(tg) computed by:

¥

E(ty) = bdl\Nmm(t, ) WV ss(t- ty, f)dtdf

¥ T
The channd impulse response estimation is validated through
simulated data for a scenario close to the experiments of
INTIMATE 96 in shallow water context [DEM97] . A water
column of 135 meter depth with a sound speed profile on a
perfectly rigid sub-bottom is modeled. A source is put at 90 meter
depth and a single hydrophoneis considered at a distance of 5.6 km
and 115 meter depth. Theory of rays is used to modeled acoustic
propagation and the signal emitted by the source is a linear FM
from 300 Hz to 800 Hz with a 62.5ms duration. For such a scenario
the model has estimated 45 arrivals. The results prove the
performances of ‘sub-optimal’ time-frequency corrdation under
realistic conditions. The channe impulse response was estimated

by the optimal matched-filter and the blind sub-optimal Time
Frequency correlation.
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Figure 1 : Impul se response estimation

1: theoretical impulse response, 2 : impulse response estimation by
matched filtering, 3 : impul se response estimation by Time
Frequency analysis, SNR=10 dB

At the end of this part, the capabilities of designing a flow chart
dedicated for the channel impulse response estimation needed in
passive tomography are demonstrated. Performances closed to the
classical matched filtering are obtained by associating a stage for
instantaneous frequency estimation and a stage for time frequency
match filtering. A more detailed version of this work and a part
dedicated to source estimation may be found in [GERO1] .

4. Two Time Frequency Tools for High
Resolution Treatment

The simulation of Part 3 presents a first group of 4 paths which
are not resolved neither by the classical active matched filtering nor
by our passive flow chart. Such as in active process where High
Resolution scheme may be used, we are now focussing on the
development of High Resolution Time Frequency Mapping to
replace the RGK transform in the flow chart proposed in Part 111. A
first mapping associates a optimal time windowing stage with a
dechirp and MUSIC stages, whereas a second associates an optimal
time windowing stage with the Modified High Resolution Capon
method stage devel oped by Luzin [LUZ98].

4.1 Time Windowing — Dechirp—MUSIC

This tool is dedicated for signals s(t) having a curvilinear
distribution of power time spectral density. Each signal of this
family can be locally approximated by a Chirp signa and then if
the area of validity of this assumption and the chirp parameters
(central frequency and bandwidth) are known, MUSIC algorithm
can be applied to m(t) in order to estimate each delay ti. The
criticism point of the algorithm is to determine automatically for
each time to, the optimal neighborhood where the chirp-like
assumption isvalid. Thisis achieved by looking for the length L of
a rectangular time window ( wy(t-t0) ) to apply to m(t) which
minimizes the spread of the Fractionnal Fourier Transform of the



windowed signal. The agorithm developed follows the flow chart
presents Figure 1.
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Figure2: Time Windowing — Dechirp — MUSIC Fow Chart

Thisagorithm is applied to the following synthetic signal
. . B .
s(n) = exp(2pjfyin N + 20j 7 n®)” w ()

+exp(2pif i (- 15) + 20j %(n- 157" w; (1)

+0.1b, (n) +0.1jb (n)
with frin=0.1Hz, B=0.3 Hz, T=350 s, fe=1Hz, b, and b; two
independent gaussian white noise of unity variance.
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Figure 3 : High Resolution Instantaneous Frequency estimations

left : gray level = Wigner Ville transform of s(n), plain black curves
= theoretical instantaneous frequencies

right : plain black curves = theoretical instantaneous frequencies,
black stars = estimated instantaneous frequencies

The algorithm proposed in this part succes in resolving two closed
arrivals until a signal to noise ratio equal to 10 dB. Unfortunately
this agorithm can not be applied to more than two delayed arrivals
because it demands a too drastic tradeoff to achieve :
- L must besmall to obtain a‘chirp — like' signal,
- L must be high to alow MUSIC to separate the multiple
arrivals.

4.2 Time Windowing — M odified Capon

Any high-resolution technique needs some a priory assumption
on received signal. The proposed algorithm is constructed under
assumption that received signal consists of several tone pulses with
different delays. The main final goal of this algorithm is to show a
possible way to achieve high-resolution estimates of instantaneous
spectrum. Let’s consider the following diagram (Figure 4). The
analysed signal (1) consists of two tone pulses with different
delays. The task concludes in estimation of spectral power density
of the signal inside the short signal window (WS).

1. Analysed signal

2 Analysis window
(WA)
Signal window (WS)

3
4h Model window (WM)

Figure 4 : Time Window Chart

It will be based on two assumptions — the signal is supposed
being a mixture of tones and parameters of the mode (spectral
modes) was estimated basing on data sample into the window
(WM) that is covering the nearest neighbourhood of the analysed
window.

Thus, the final task can be formulated as following - what is the
better time position of model window (WM) for given position of
signal window (WS), which corresponds assumed signal mode.

Assuming that the covariation matrix of the signal is a sufficient
gtatistics the unique most powerful invariant rule for recognition of
stochastic signal is

XRyIX 3 CxX*(gyRos + R) X, C>1,

where Rgs, Ro are covariation matrixes of desired signal and noise
respectively, X is the signal sample, and constant C determines
predefined value of the false alarm. This rule can not be applied
directly to the considered task because of as signal as noise models
are determined with accurate to unknown parameters — positions of
spectral components and their powers. But it shows that statistics
based on comparison of inverse covariation matrixes can be used as
atool to compare signal model [BAK84]

The discussed algorithm is based on modified Capon estimate
proposed at [LUZ98], which is based on two sequential procedures
— 1) adaptive filtering and 2) estimation and non-coherent
suppression of white noise.



Formula below represents solution of the modified Capon
estimate for two window configuration, where covariation matrix R
corresponds modd estimation window WM and where covariation
matrix Ry corresponds signal windo WS, and V is steering vector.

-3 V'(R+R J'RR+R )V ¢

B - L1 ¢ VIR+RJV %
T OVIRIRIVE (o g ) BRIV
[ ¢, & are minimal self-values for modified Capon algorithm

for windows WS and WM respectively.
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Figure5: Modified Capon Algorithm Flow chart

The flow chart of the developed algorithm is presented at
Figure 5. At Figure 6 and 7 the simulation results of the proposed
algorithm are presented. The signal sample of length 128 is formed
by 4 tone pulses with duration 40 samples at frequency positions
40,50,60,70 with delays 30,30,60,60 sampl es.

Figure 6 : Wigner-Ville Distribution

Figure 7 :. Time Windowing — Modified Capon Distribution

Figure 6 shows typical for Wigner-Ville transform crossterm
interference, but the distribution based on modified Capon shows
cross-term sidelobes supression. It gives a possihility to use such

technology for instantaneous spectrum estimation basing on a
priory information on structure of the signal.

5. Conclusion

In this communication, we have demonstrated the capabilities
of Time Frequency tools to perform the identification of the
impulse response channel without using the knowledge of the
emitted source signal in the case of a single source and a single
hydrophone. A flaw chart using an instantaneous frequency
estimation stage added with a Time Frequency detector allows to
achieve the same performance as the classical active matched
filtering ones. Then, we have proposed two Time Frequency tools
to achieve High Resolution performances. The first one alows the
separation of only two components whereas the second presents
good performances only on a small class of signals. This second
method will be improved by inserting some corrections allowing a
deviation from the assumed modd and then enlarge the class of
signals of interest. The case of multi sources will be treated thanks
to an improvement of the measurement system (a linear array of
hydrophones), then the different arrivals may be separated through
the joint measurement of delays and directions of arrival.

Refer ences

[MUN79] Munk, W. and Wunsch, C., Ocean Acoustic Tomography: a
Scheme for Large Scale Monitoring, Deep-Sea Res. 26, pp. 123-61 (1979).
[BAGS88] Baggeroer, A. B., Kuperman, W. A., and Schmidt, H: Matched-
Field Processing: Source Localization in Correlated Noise as an Optimum
Parameter Estimation Problem, Journal of Computational Acoustics 59, no. 2,
pp. 571- 587, 1988.

[DEM97] Demoaulin, X.; Stephan, Y.; Jesus, S.; Codho, E. and Porter, M. B.,
INTIMATE96: a Shallow Water Tomography Experiment Devoted to the
Study of Internal Tides, Proc. Of SWAC' 97, Beijing, April 1997.

[BAR93] R.G.Baraniuk, D.L.Jones, Signal-dependent time-frequency
analysisusing aradially Gaussian kernel, Signal processing, 32, pp. 263-284,
1993

[JON95] D.L Jones, R.G Baraniuk, An adaptative Optimal-Kernd time-
frequency Representation, |EEE Transactions on signal processing, vol 43,
n°10, October 1995

[FLA88] P.Flandrin, A time-frequency formulation of optimum detection,
IEEE Transactions on acoustics, speech and signal processing, vol 36, N°9,
pp.1377-1384, september 1988

[GERO1] C.Gervaise, A.Quinquis, N.Martins, Time-Frequency approach to
the study of underwater acoustic channel estimation and source
reconstructions, Physics in signal and image processing, Marseille, France,
january 2001

[LUZ98] I.Luzin, M.Dubinsky, High resolution spectrum estimating
algorithm, OCEANS 98, Nice, France, september 1998

[BAKS84] P.SAkimov, P.A.Bakut, V.A.Bogdanovich. Theory of signal
detection / Editor P.A.Bakut, Moscow, Radio i Svyaz', 1984, pp.179-181, (in
Russian)



