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Résumé — Nous prouvons que les melanges de sources & modules constant peuvent etre identifiées avec une probabilite 1 en un
nombre fini d’echantillons. Ce resultat renforce des publications précedentes ot 'on ne considerait que des echantillonages infini.
La preuve est basée sur la technique de linearization de l'algorithme ACMA, suivi d’'un argument recursif. Nous appliquons cette
technique & l'identification un mélange de sources provenants d’un radar de surveillance secondaire.

Abstract — We prove that mixtures of constant modulus sources can be identified with probability 1 with a finite number
of samples. This strengthens earlier results which only considered an infinite number of samples. The proof is based on the
linearization technique of the Analytical Constant Modulus Algorithm, together with a simple inductive argument. We also
discuss an application of this technique to the identification of mixtures of Secondary Surveillance Radar signals.

1 Introduction

The constant modulus algorithm (CMA) is very popular
for blind equalization [1, 2] and blind separation of multi-
ple Constant Modulus (CM) signals [3]. It was soon rec-
ognized that the CM cost function can be used also for the
separation of non-Gaussian signals, and more specifically
finite alphabet signals [4, 5].

The analysis of the CMA algorithm has been mostly
studied in a statistical framework, based on the expected
value of the CM cost function. Hence identifiability results
are strictly speaking only valid for infinitely many samples
and ergodic scenarios. For the finite alphabet case, an im-
portant result in [5] was a proof of identifiability when only
finitely many samples are available. For the CM case, an
unsatisfying argument in [3] argued that about 2d should
be sufficient for identification of d sources. The argument
was based on counting the equations and the number of
unknowns.

In this paper we give a rigorous proof of identifiabil-
ity of a mixture of d continuous CM sources with finitely
many samples. We use the linearization technique of [3],
together with a simple inductive argument, to show that
d? — d + 1 many samples suffice with probability 1.

The problem is formulated in section 2. Section 3 con-
tains the proof of the main theorem, and section 4 dis-
cusses an application to the separation of Secondary Surveil-
lance Radar signals.

2 The identification problem

Consider an array with p sensors receiving d narrow-band
constant modulus signals. Under standard assumptions

for the array manifold, we can describe the received sig-
nal as an instantaneous linear combination of the source
signals,

x(t) = As(t) (1)
where
x(t) = [z1(t),--- ,zp(t)]T is a px 1 vector of received
signals at time ¢,
A = [a;,---,aq4], where a; is the array response

vector towards the ¢’th signal,

s(t) = [s1(t), -+ ,s84(t)]T is a d x 1 vector of source
signals at time ¢. We further assume that all sources
have constant modulus. This is represented by the
assumption that for all ¢, |s;(#)|=1(i=1,---,d).

In our problem, the array is assumed to be uncalibrated
so that the array response vectors a; are unknown. Un-
equal source powers are absorbed in the mixing matrix.
Phase offsets of the sources after demodulation are part
of the s;. Thus we can write s;(t) = e/%(!) where ¢;(t)
is the unknown phase modulation for source ¢, and we de-
fine @(t) = [¢1(t),--- ,¢4(t)]T as the phase vector for all
sources at time ¢. Note that this leads to the fundamental
indeterminacy of phase exchange between a source and the
corresponding column in the mixing matrix. Furthermore
we can permute the sources and simultaneously permute
the columns of A. Thus, the problem is determined only
up to a permutation and a scaling with complex elements
of unit modulus.

The identifiability problem asks for the number of sam-
ples N;q needed in order to ensure (with probability 1)
that in the noiseless case we have a unique solution up to
the above indeterminacies.



3 Main theorem

In this section, we derive an upper bound on the num-
ber of samples needed to guarantee unique identifiability
(up to the known indeterminacies) of a constant modulus
instantaneous mixture. We first show that given infinite
data the above indeterminacies are the only ones. We then
continue to derive finite sample results.

Let T = {z:|2| =1} be the complex unit circle. Let
T be the Cartesian product of d copies of T. Note that
T¢ is the collection of d-tuples of CM signals. Define the
range of a linear transformation A restricted to a set X
as A(X) = {A(v)|v € X}, and define AT as the pseudo
inverse of A.

Claim 3.1 Assume that A,A' € C,xq are two linear
transformations of rank d (i.e., full column rank), such
that A(T) = A'(T?%). Then G = AYA' is a linear trans-
formation mapping T¢ onto T¢.

The proof of the claim is straightforward using the fact
that both transformations are one-to-one from their do-
main (C?) onto their range.

Let A be the set of linear transformations from C? to
C? which map T onto itself:

A:{AeCdxd|A: Tdolt?Td} .

The following theorem characterizes the linear transfor-
mations in A.

Theorem 3.2 Assume A € A, then A is a product of a
permutation and o diagonal matriz with diagonal elements
on the unit circle.

Proof Assume that A is as above. Then for every vector
v € T¢, Av € T?. We will first prove that each row of A
contains at most one non zero element with magnitude 1.

Let , )
a=la...aq) = [r1e??" .. .r4el%?]

be a row of A where r; is the magnitude of a;. We know
that for each s € T?, |as| = 1. Choose s; be such that
s; = [e7 991 ... e 7%4]. We obtain

d

sla=r1+2rk=1 (2)
k>1

since all r, are positive real numbers. Similarly define
(s2)1 = €991 and (s2) = —e 7% for 1 < k < d. Then

d
Soa =11 — Zrk 3)

k>1

Since |as2| = 1 we have either

d
rl—Zrkzl 4)

k>1

d
ry— ZTk =-1. (5)

E>1
In the first case we obtain from (2) and (4) that r; =1
and ), rx = 0 which is the desired result. In the latter
case r1 = 0 and ), rt = 1. Proceeding inductively we

or

obtain that exactly one element of a is non-zero with mag-
nitude 1. Since A is invertible (remember that A (T?)NT?
contains a basis of C?) we obtain that A is a permutation
of a diagonal matrix with diagonal elements in T. O

We now show that infinitely many (i.i.d.) samples from
a continuous alphabet which is supported on a dense set
will suffice. By the independence assumption we are cer-
tain that we obtain a dense set of samples in T¢ (otherwise
there is an open set which we have missed, but this hap-
pens with probability zero). Since by continuity a linear
transformation is determined by its values on a dense set
we are finished.

A consequence of the above discussion is that it would
be sufficient to characterize linear transformations map-
ping T? into itself. This reduces the identifiability ques-
tion into the solution of a specific set of quadratic equa-
tions, which we now analyze.

Theorem 3.3 Let N = d(d — 1) + 1. Let s(k), for k =
{1,...,N}, bei.i.d vectors (with independent components)
in T?. Assume that there is a linear transformation A
such that y(k) = As(k), Vk = 1,..., N, with y(k) € T?,
then with probability 1 A € A, i.e., there is a diagonal ma-
triz, with unit norm diagonal entries A and a permutation
matriz P such that A = AP.

Proof It is sufficient to prove that each row of A con-
tains exactly one non-zero element a;; which is unit norm:
la;;| = 1. Moreover since s(k) are random vectors, A will
be invertible with probability 1. Hence we can consider
separately each row of A. Let a,, = [a1,...,aq] be the
m’th row of A. Let y(k) =y,,(k) be the m’th element of
y (k).
Then Vk € {1,..., N}, we have:

d
y(k) = Z a;si(k)

d
= |w(k)* = |Za,~s,~(k)|2
= 1= Z a;a;si(k)s; (k) (6)

1<i,j<d
Denote P;; = a;aj and Pr = 2?21 P;;. By linearizing

(6) we obtain:
UYp=1 (M

where

1 s (N)s3(N) s5(N)sa(N) ... s3(N)sa_i(N)

P = [PT,P]_Q, .- .,Pd(d_l)]T, and 1 = [1, ey 1]T A non-
trivial solution of (7) is:

Pr=1
{Pijzo, Vi ®)
Since P;; = a;a] we immediately obtain that there is a
j such that a; = 0 for all ¢ # j. Since Pr = 1 this also

implies |aj|? = 1 as needed. Two different rows cannot
have their non-null element in the same column because



A would not be a bijection. Thus the absolute value of A
is a permutation. Hence it is sufficient to prove that ¥ is
full column rank (w.p.1), which is the content of the next
lemma. d

Lemma 3.4 Under conditions of theorem 3.3, the matriz
U has full column rank w.p. 1.

(Note that if N < d(d — 1), ¥ is definitely not full
column rank because it is a wide matrix.)
Proof Given N > d(d — 1) samples of s(k), assume to-
wards contradiction that there exists a vector a such that
Ya = 0, or equivalently I{a, ;5,1 <@ # j < d}, not all

zeros such that for every t = 1,--- , N, the next equation
holds:
ao + Y aujsi(t)s}(t) = 0 (9)
i#]

After multiplying every equation by sj(t), this becomes,
forallt=1,---,N:

D ouysi(t) +si() [0+ Y augsit)s;(t)
1< 1<i#j
+(s1(t)” Z aisi(t) =0
1<i
After taking the conjugate of this expression, we see that
it is a set of N quadratic equations in s1: a(t) +b(t)s1 (t) +
c(t)s?(t) = 0. Hence one of the following holds:
(a) s1(t) is a function of (s2(t),--- ,sq4(t)) which contra-
dicts the independence assumption.
(b) The coefficients satisfy: a(t) = b(t) = c(t) =0, Vt €
[1, N], hence:
1.a(t) =0= 3, ;ai1;s;(t) = 0. Since the s;(t) are
i.i.d., it means that Vi, ay; = 0.

2. Similarly, from ¢(t) = 0 we obtain Vi, a;; = 0.

3. b(t) =0=aqap+ Zl<i-75j aijsi(t)s}‘(t) =0.
Applying inductively the same argument on b(t) as we did
on equation (9), we obtain that all a;; are equal to zero.
Therefore W is full rank with probability one.

Note that the recursive application of the argument
needs 2d+2(d—1)+---+2 = d(d — 1) many independent
samples. Hence w.p.1 d(d — 1) samples are sufficient. O

4 Application to Secondary Surveil-
lance Radar

Secondary Surveillance Radar (SSR) is a two-way radar,
which behaves almost as a wireless communication sys-
tem. One of the research topics in this field is the uplink
reception on an array antenna. The uplink sources can be
modeled as Zero/Constant Modulus (ZCM) signals: the
complex signal is either 0, or has a modulus 1, with equal
probability.

Using the same philosophy as in the preceding section,
it is possible to derive how many samples would be suffi-
cient to identify the mixing matrix of ZCM sources. The
proof follows the same course, except that the matrix ¥
is N x (d?(d + 1)/2), and that the probability that ¥ is
full column rank is not 1, but bounded by the probability
described in the following theorem.

Theorem 4.1 Let s(k), for {k=1,...,N} be i.i.d ZCM
d-vectors with independent components. Assume that there
is a linear transformation A such that y(k) = As(k),
Vk=1,...,N, wherey(k) is ZCM d-vector as well. Then,
with probability larger than P(N), A € A, i.e., A is iden-
tifiable up to a diagonal and a permutation. P(N) is given

by d—2
P(N) = P.(N) | T] P (V - d)] Py

Cir1\N—it1
where Py(N) = [1%, [1 — (-4 ], and
. N—La—it1 la—it1
PPON)= 3 Po(NiyN-Lg_i1) [ po(Ni—j+1)
Ni=lg—it1 j=1
with
Laq—it1 = E;;ll laji1,
I = a1l
!
e
2 —d—i—
py = [lize1- (%) )
Do(N) = 1-27N,

Proof It is sufficient to prove that each row of A con-
tains exactly one non-zero element a;;, which is unit norm:
la;j| = 1. Hence we can consider separately each row of
A. Let a,, = [a1,...,a4] be the m’th row of A. Let

y(k) = y,,(k) be the m’th element of y(k). Then Vk €
{1,..., N}, we have:
d
y(k) =D _aisi(k) (10)
i=1

The ZCM property can be written as: {y =0, or |y| =
1}, which is equivalent to y(yy* — 1) = 0, and y = |y|?y,
which leads Vk € {1,...,N} to:

SNasik) = Y afajarst(k)s;(k)si(k)
=1

%,5,k=1
d
= Y _lailailsi(k)[*si(k)
i=1
d
+ Y 2aiajarsi(k)s;(R)si(k) (11)
1<i
1<j<1
il
Denote:
pT = [a1 (|a1|2 — ].) s =504 (|ad|2 — ].) y
2a}a1as, . ..,2a5a400-1,0}a3, . .. ,a5a5_]

by linearizing (11), and using s?s} = s;, we obtain:
Tp=0 (12)

where ¥ is a N x (d?(d + 1)/2) matrix, which k’th row,

¥, is equal to:

= [Sl(k)a SQ(k)a B Sd(k)7 |31|2(k)32(k)1 )

|sal®(k)sa—1(k), 51(k)*s3(k), . -, 55(k)s5_y (K)]

Py



¥ is full rank with probability P(N) (the proof is too
long to be presented here, a sketch of it is placed at the
end of this proof). Assuming that ¥ is full column rank,
the only solution is p = 0.

Since A is a bijection, there is at least an element a;
non-null. Then p = 0 implies that:

ai(lai* =) =0 [ a|=1
a}‘a?:O, Vj#i a; =0, Vj#i

Two different rows cannot have their non-null element
in the same column because A would not be a bijection.
Thus the absolute value of A is a permutation, and the
identifiability holds with probability P(N). |

Outlines of probability P(N): The construction of
the probability follows a similar path as lemma 3.4. We
consider for each source s;, the probability to receive a set
of samples §;, with modulus 1. For this set S;, this source
is a constant modulus source on which we use lemma 3.4.

5 Simulations

In order to check the validity of lemma 3.4 for continuous
CM sources, we simulated 1000 independent runs with
N =1,---,100 samples and d = 2,---,6 sources. For
each number of samples, we computed the rank and the
conditioning of the ¥ matrix. For N > d(d — 1), the rank
of ¥ was always equal to d(d — 1) + 1, as predicted by
lemma 3.4.

1
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0.4r

o
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Inverse conditioning of W: mean and std.

0 20 40 60 80 100
Number of Samples

Fia. 1: (circles) Average mean of the inverse condition
number of ¥, and (shaded area) its 1o standard devia-
tion interval for the continuous CM sources.

Figure 1 shows the inverse of the condition number of
U, for varying d and N. Interestingly, it appears that
¥ is rather ill-conditioned when N is close to its lower
limit. Indeed, the lemma did not insure the conditioning
for . Nevertheless, one can note that with a few sam-
ples above the lower limit, this adverse situation improve
significantly.

We present the result of theorem 4.1 in figure 2, where
the complementary probability of identification is shown
for several numbers of sources as a function of the number
of samples.
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Fi1G. 2: Complementary Probability of identification for
2, 3, 4, and 5 sources as a function of N.

Figure 2 shows that the probability curves have the
same negative slope, which is one “decade” for roughly
10 samples. Unfortunately, the initial point is of the or-
der of d®, which for a desired identifiability probability
makes the required number of samples quite high.

6 Conclusion

In [3], the minimum number of samples needed for iden-
tifiability of the CM source separation problem was indi-
cated, but the argument was based on counting the equa-
tions and the number of unknowns. Here we gave a rig-
orous proof of identifiability, but for a higher number of
samples. An extension to the finite alphabet case is to be
investigated, as this method has the potential to reduce
the number of samples needed compared with [5].
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