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R�esum�e { Cette communication consid�ere la mise en oeuvre d'egaliseurs aveugle bas�ee sur les techniques de Bussgang et une

nouvelle structure de �ltrage \split". Les algorithmes de Sato, Stop-and-Go et Godard sont analys�e. Les r�esultats de comparaison

indiquent une meilleur performance de la nouvelle structure de �ltrage par rapport �a celles bien connu de la litt�erature.

Abstract { This paper considers the implementation of blind equalizers based on the Bussgang techniques and a novel split

�ltering structure. The cases of Sato, Stop-and-Go and Godard algorithms are analyzed. Comparison results indicate a signi�cant

improvement of the new �ltering structure over the traditional technique taken from the literature.

1 Introduction

Since blind equalization became one of the main areas in
communication systems many researchers have been work-
ing on new structures and algorithms to improve the per-
formance of such scheme [1]. However, it still presents
some disadvantages when compared with the traditional
trained equalizer. The presence of local minima and a
slower convergence rate can be considered main drawbacks
of these self-learning structures.
In this particular work we pursue the e�ects of a novel

transversal �ltering structure together with some of the
well-known Bussgang algorithms [2, 3, 4]. Thus, we are
concerned with adaptive transversal equalizers updated
with gradient techniques. In such cases the eigenvalue
spread of the autocorrelation matrix dominates the con-
vergence rate [5]. The performance can be strongly im-
proved if we introduce an operation capable of reducing
such a spread. One of these operations consists of splitting
the transversal �lter into its symmetric and antisymmetric
parts [7, 8].
This new scheme was �rst proposed by [6]. Later on, [7,

8] proposed a new approach to the split transversal �lter-
ing combining it with a linearly constrained optimization
scheme. This gave birth to a split structure based on the
Generalized Sidelobe Canceller (GSC). It is this structure
that we present in the next section.

2 Split Transversal Filtering

Let us consider the classical scheme of an adaptive transver-
sal �lter as shown in Figure 1, where W (n) is a vector of
N{by{1 coeÆcients. If we split up this �lter into its sym-
metric and antisymmetric parts then:

W (n) =Ws(n) +Wa(n) (1)

where Ws(n) =
1

2
[W (n) + JW (n)], Wa(n) =

1

2
[W (n) �

JW (n)] and J is the reection matrix.
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Fig. 1: Traditional adaptive transversal �lter

The symmetry and antisymmety conditions of Ws(n)
and Wa(n) can be easily introduced through a linearly
constrained approach [7]. It consists of making:

Cs =

�
IK
�JK

�
Ca =

�
IK
JK

�
(2)

Fs = Fa = 0K

for N even and K = N
2
, and of imposing:

Ct
sWs(n) = Fs and Ct

aWa(n) = Fa (3)

in a constrained optimization process of the mean-square
value of the estimation error e(n), which is de�ned as the
di�erence between the desired response d(n) and the �lter
output y(n).
Now, using the GSC structure with the symmetry and

antisymmetry constraints, the split �ltering scheme can
be represented in the form of Figure 2 (N even). For N
odd, please refer to [8].
As far as the adaptation process is concerned, the LMS

algorithm can be applied independently in each branch in
a normalized fashion. Thus, the algorithm for the sym-
metric �lter can be de�ned as:

W?s(n+ 1) =W?s(n) +
�

rs(n)
X?s(n)e(n) (4)

and for the antisymmetric �lter as:

W?a(n+ 1) =W?a(n) +
�

ra(n)
X?a(n)e(n) (5)



where:

ri(n) = ri(n� 1) + 1

n
(X2

?i(n)� ri(n� 1)) i = a; s

(6)
 is the forgetting factor and � is the adaptation step-size.
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Fig. 2: GSC implementation of the split �lter

Further details on split transversal �ltering will be re-
stricted to the literature [8], once our aim is to investigate
the performance of the traditional blind algorithms when
using this novel �ltering structure.

3 Sato Algorithm

In [9] it was shown that an important generalization of the
Sato algorithm [2], known as the BGR algorithm, posses
a desirable global convergence property under two ideal-
ized conditions. To meet these conditions the equalizer
should be of in�nite-length and/or the input data should
be continuous. However, neither the �rst nor the second
condition holds in actual digital communication systems.
Thus, the Sato algorithm presents what is called Local
Convergence.
Consider the channel having the following impulse re-

sponse:

Channel 1: h(n) = 0:5(Æ(n) + Æ(n� 2) + Æ(n� 3))

and the equalizer having 21 coeÆcients (center-spike ini-
tialization). The input constellation is a binary 2{PAM,
and the adaptation step-size is set to � = 5:10�4. In order
to check if the system has converged to the global solu-
tion we will use the percentage Inter Symbol Interference
(ISI) [9]:

P =

P
i jtij

maxjtij
� 1 (7)

where
ti = hi � wi (8)

and hi and wi are the channel and the equalizer impulse
responses. The overall channel-equalizer system has an
open-eye if P < 1 and a closed-eye if P � 1.
In Figure 3 we present the simulation results for the sys-

tem having the previous con�guration and using the tradi-
tional transversal �ltering. One can see that the equalizer
was trapped in a local minimum. The �nal percentage ISI
was about 200%, what guarantees that the eye is closed
and no successful decisions can be made at the receiver.
Let us carry out the same simulations but with the split

transversal �ltering instead of the traditional scheme. The
equalizer, W (n), is implemented with 32 coeÆcients, so
both W?a and W?s have 16 coeÆcients each. The step-
size of the normalized LMS algorithm is set to � = 1:10�2.
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Fig. 3: Percentage ISI { Traditional transversal �ltering

The results are shown in Figure 4, where the percentage
ISI was reduced to about 10%, what means that the eye
is open and correct decisions can be made in the receiver.
Now the equalizer does converges to the global minimum.
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Fig. 4: Percentage ISI { Split transversal �ltering

4 Stop-and-Go Algorithm

In [10] the problem of local convergence for equalizers im-
plemented by �nite length �lters is addressed once more.
In that work one of the examples showing this misbehavior
is illustrated with the Stop-and-Go algorithm [3]. Let us
apply the split transversal �ltering to this other Bussgang
technique. Consider now the following channel:

Channel 2: h(n) = 13

31
(Æ(n) + Æ(n� 1) + Æ(n� 3))

with a 4{PAM input constellation [-3, -1, 1, 3]. For the
traditional scheme the equalizer has 100 coeÆcients, center-
spike initialization, step-size � = 2:10�4 and � = 2.
In order to quantify the performance of the equalizer let

us use the same ISI parameter de�ned in [10]:

ISI =

P
i t
2

i �maxit
2

i

maxit
2

i

(9)

where ti is de�ned as in equation 8.
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Fig. 5: ISI (dB) { Traditional transversal �ltering

Based on Figure 5 we can conclude that the equalizer
was trapped in a local minimum again. This also means
that the eye is still closed and that no correct decisions
can be made in the receiver.
Figure 6 shows the ISI evolution of the split equalizer

with the same parameter speci�cations used in Section 3.
Is is clear that now the equalizer was able to reach the
global minimun.
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Fig. 6: ISI (dB) { Split transversal �ltering

5 The Split Equalizer and The Go-

dard Cost Function

Since the results from the last two sections had suggested
that the split equalizer would have a better performance
than the traditional transversal equalizer, we decided to
investigate the e�ects of the split operation into a Godard-
like cost function.
Consider then the following AR channel [11]:

Channel 3: xn + �xn�1 = an

where � = 0:6, xn are the output data and an the input
data constrained to a binary 2{PAM constellation. The
equalizer (CMA 2{2) has only two coeÆcients, [wo;w1],
such that:

yn = woxx + w1xn�1 (10)

and the cost function can be written as [11]:

F = 1

4
(w4

oEfa
4

ng+ 6w2

o(w1 � �w0)
2Efa2ngEfx

2

n�1g
+(w1 � �w0)

4Efx4n�1g � 2R2w
2

0
Efa2ng+

�2R2(w1 � �w0)
2Efxn�1g+R2

2
)

(11)
In Figure 7 it is possible to visualize F as a function of

the equalizer coeÆcients [wo;w1].
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Fig. 7: Cost function for channel 3, 2{PAM, CMA 2{2
and traditional transversal �ltering

Now, using the split transversal structure:

yn =
�
xn xn�1

� � 1 1
1 �1

��
w0

w1

�
(12)

yn = xn(w0 + w1) + xn�1(w0 � w1)

and making:

v0 = (w0 + w1) and v1 = (w0 � w1) (13)

the cost function turns to be:

F = 1

4
(v4oEfa

4
ng+ 6v2o(v1 � �v0)

2Efa2ngEfv
2
n�1g+

+(v1 � �v0)
4Efx4n�1g � 2R2v

2

0
Efa2ng+

�2R2(v1 � �v0)
2Efxn�1g+R2

2
)

(14)
which is plotted in Figure 8 as a function of the equalizer
coeÆcients [wo;w1].
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Fig. 8: Cost function for channel 3, 2{PAM, CMA 2{2
and split transversal �ltering

Comparing Figures 7 and 8 we can verify that there is a
slight di�erence in the form of the cost function, however,
it is not such a change that turns it to be convex.



The cost function in equation 14 still has local minima.
Somehow the split operation permits the local minima to
be avoided during the adaptation process. How it may
happen is what we intend to address in the next section.

6 The Zero-Forcing Equalizer

Consider then the case of a split zero-forcing equalizer.
De�ning as in [12]:

tk =

1X
j=�1

hjwak�j +

1X
j=�1

hjwsk�j (15)

where
Ws = CaW?s Wa = CsW?a (16)

and then applying the zero-forcing condition, it follows
that:

tk =

1X
j=�1

hjwak�j +

1X
j=�1

hjwsk�j = Æk (17)

or in its Z-transform:

T (z) = H(z)Wa(z) +H(z)Ws(z) = 1 (18)

and:

Wa(z) +Ws(z) =
1

H(z)
(19)

It is very important to note that during the adaptation
process the left-hand side of equation 19 can not be simply
substituted byW (z) =Wa(z)+Ws(z) once the symmetric
and antisymmetric equalizers are updated independently
by equations 4 and 5.
Equation 19 suggests that the split operation increases

the degree of freedom of the system during the minimiza-
tion of equation 14, which permits the equalizer to avoid
the local minima.

7 Conclusions

In this work we presented the application of split transver-
sal �ltering into blind equalization. The proposed split
equalizer performed much better than the traditional one,
as we veri�ed by simulations using some classical exam-
ples of the literature. Global convergence for both the
Sato and Stop-and-Go algorithms were obtained when us-
ing the split equalizer, while the traditional equalizer was
trapped in a local minimum.
It was also veri�ed that the split equalizer cost function

is not convex. So, even though the split operation does
not vanishes the local minima, it is somehow able to avoid
these undesirable equilibra in order to lead the equalizer
to the global solution.
When analyzing the zero-forcing equalizer we concluded

that the independent adaptation of the symmetric and the
antisymmetric parts should be the cause of this better per-
formance. Finally, it is important to improve the analitical
analysis of the split equalizer. The studies concerning this
aspect are in progress.

Finally, based on our research results, we can aÆrm that
the split �ltering structure should be viewed as a promis-
ing alternative to the traditional transversal scheme, spe-
cially when applied to blind equalization.
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