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Abstract – Changes in video data recorded by a static camera can be caused by structural scene changes like motion and
by illumination changes. We describe an algorithm which discriminates reliably between structural changes and illumination,
thus detecting only ’true’ scene changes. To this end, we derive a new test statistic for change detection based on a Total Least
Squares (TLS) approach. The basic idea is to design a test to decide whether or not two vectors observed in noise are collinear.
The TLS statistic reacts to structural scene changes, while it is insensitive to varying illumination. Moreover, we integrate the
TLS-statistic into a Bayesian framework for change detection, which uses a priori knowledge via Markov Random Fields. The
resulting change detection algorithm combines the benefits of Bayesian detection with robustness against both fast and slow
variations of illumination.

1 Introduction

Motion analysis for object oriented image sequence coding
as well as for image interpretation frequently includes the
detection and segmentation of structural scene changes in
image sequences which are recorded by a static camera
[1, sec. 3.3.1],[2]. Detection of the changes is often ex-
pressed in a statistical framework [3, 4, 5]. The statistical
approach has the advantage that, on the one hand, the
decisions can be related to detection error probabilities,
usually the rate of false alarms. On the other hand, a
priori knowledge about the expected change masks can
be brought to bear to reduce the detection errors. Such
Bayesian algorithms using Markov random fields (MRFs)
were e.g. described in [6, 7]. These algorithms compare
between the image intensities of subsequent frames, what
corresponds to applying temporal highpass filter. They
are therefore insensitive to slowly changing illumination.
Fast changes of illumination, however, appear in the detec-
tion result, and represent detection errors from the point
of view of motion detection.

Existing illumination invariant methods to change de-
tection are often not based on statistical decision theory
[8, 9], or do not use a priori knowledge about the sought
change masks [8, 9, 10]. We therefore derive in this pa-
per a new test statistic which is insensitive to even fast
variations of illumination. Based on a model for image
formation using Lambert’s law, the test statistic assesses
whether or not two vectors observed in noise are collinear.
Moreover, we show how this approach can be integrated
into the Bayesian framework of [6, 7].

2 The Image Formation Model

Roughly, the recorded image intensities can regarded as
fractions of scene illumination reflected by the visible ob-
ject surfaces in the direction of the camera. More pre-
cisely, each illuminated and visible object point P emits a
certain power of light L(P, d) per unit area (the so-called
scene radiance) in the direction d of the camera. Let
us develop here our image formation model from Lam-
bert’s surface model, which assumes that each surface
point reflects equally well into all directions d. A surface
point P = (X,Y, Z) is then radiometrically described by
a surface-specific scalar reflection factor ρ(P ), and struc-
turally by its position P and by a unit column vector n(P )
which is normal to the surface at P . The scene radiance
L(P ) – which is in this case independent of d – is then
given by

L(P ) = ρ(P ) · IT (P ) · n(P ) (1)

where I(P ) is a column vector representing direction and
amount of the incident light, and IT (P ) · n(P ) the in-
ner product between illumination vector and surface nor-
mal. The observed image intensities g(m,n) depend on
the power of light E(m,n) per unit area (the so-called im-
age irradiance) reaching pixel (m,n). According to the
fundamental relationship of radiometric image formation
[11], E(m,n) obeys

E(m,n) = L(P ) · F−2 · c (2)

where it is assumed that the 3D-point P is projected onto
pixel (m,n) in the image plane. F denotes the F -number,
i.e. the ratio of the camera system’s focal length and its



aperture 1. Finally, c is a constant. Combining (1) and
(2) yields

E(m,n) = ρ(P ) · IT (P ) · n(P ) · F−2 · c (3)

Assuming that the sensor converts the image irradiance
E(m,n) linearly into intensities g(m,n), (3) becomes

g(m,n) = ρ(P ) · IT (P ) · n(P ) · F−2 ·G · c (4)

where G is the conversion gain. Rewriting the inner prod-
uct between illumination vector and surface normal to
IT (P ) · n(P ) = |I(P )| cos(α(P )), where α(P ) is the angle
between surface normal and incident illumination at P ,
(4) becomes

g(m,n) = ρ(P ) · cos (α(P )) · |I(P )| ·G · F−2 · c (5)

Assuming perspective projection, the image coordinates
(m,n) depend on P = (X,Y, Z) in camera centred coor-
dinates according to [11]

m =
f

Z
·X, n =

f

Z
· Y (6)

where f is the focal length of the camera. Since P is
expressed in camera centred coordinates, Z is the distance
of P to the centre of projection of the camera 2. Inserting
(6) into (5) yields
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= r(m,n) · a(m,n) · i(m,n) ·G · F−2 · c (7)

with
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Evidently, r(m,n) depends only on the surface properties,
i.e. structural scene information, whereas i(m,n) depends
only on the amount of illumination. The quantity a(m,n)
depends on the orientation of the imaged surface point rel-
ative to the incident illumination. Temporal variations in
illumination at P therefore strongly affect i(m,n), and not
r(m,n). Also, in real-world image sequences, the direction
of scene illumination does usually not vary strongly over
time. Then, a(m,n) will also depend mainly on struc-
tural scene information. Thus, assuming temporally sta-
ble camera acquisition parameters, in particular a con-
stant gain G and a fixed F -number F , the observed image
intensities can be split into

g(m,n) = r̂(m,n) · î(m,n) (9)
1On most lenses, the F -number is adjustable, and marked in

powers of
√

2: 1.4, 2, 2.8, 4, 5.6, . . ..
2Eq. 6 assumes the pixel coordinates as continuous and with ori-

gin in the image centre. Discrete pixel coordinates require an ad-
ditional transformation, which does not influence the following con-
siderations.

with r̂(m,n) = r(m,n) · a(m,n) depending almost ex-
clusively on structural scene properties, and î(m,n) =
i(m,n)·GF−2c depending only on illumination. Note that
the multiplicative relation between these components of-
ten remains valid when the assumption of a linear conver-
sion from image irradiance to grey levels is violated: most
camera nonlinearities are decribed by a gamma-curve ac-
cording to g(m,n) = G · Eγ(m,n), which still allows to
split the observed grey levels according to (9).

3 The Hypothesis Test

3.1 The Test Statistic

For change detection, we compare at each pixel (m,n)
the grey levels of two subsequent images which lie in a
small sliding window centred at (m,n). In many cases,
the illumination dependent component î(m,n) can be re-
garded to vary spatially only slowly [12, 13, 14, 15]. We
therefore model here the illumination component î(m,n)
to be spatially almost constant inside the window (cf. [9]).
Thus, if no structural scene change occurs within the win-
dow, temporal differences between observed grey levels in
the window are caused by a positive multiplicative factor
k(m,n), which accounts for possible illumination changes
(see (9)), and by noise. Under this null hypothesis H0,
and ordering the window-internal grey values into column
vectors x1 and x2, these are related by

x1 = s + ε1, x2 = k · s + ε2 (10)

where εi, i = 1, 2, are additive noise vectors, and s is a
signal vector. In an ideal noise free case, x1 and x2 are
parallel given H0. We thus formulate change detection
as testing whether or not x1 and x2 can be regarded as
collinear, with both k and s being unknown. Fig. 1 illus-

Fig. 1: Geometrical interpretation of testing the collinearity
of two corrupted vectors x1,x2.

trates our test statistic: For the observations xi, i = 1, 2
and assuming i.i.d. Gaussian noise, a maximum likelihood
(ML) estimate of the true signal ’direction’ (represented
by unit vector u) is obtained by minimizing the sum

D2 = |d1|2 + |d2|2 (11)

of the squared distances of the observed vectors xi to the
axis given by vector u. Clearly, if x1 and x2 are collinear,
the difference vectors and hence the sum of their norms
are zero. The projections ri = xTi · u, i = 1, 2 are ML
estimates of the signal vectors s and k · s. D2 can be



rewritten to

D2 = |x1|2 + |x2|2 − |xT1 · u|2 − |xT2 · u|2 (12)

With N pixels inside the sliding window, the vectors x1

and x2 each consist of N components. With the 2 × N -
matrix

XT =
[

xT1
xT2

]
(13)

D2 becomes

D2 = |x1|2 + |x2|2 − uT ·X ·XT · u (14)

To minimize D2, u must hence be found such that uT ·
X · XT · u is maximum, subject to uT · u = 1. It is
well known that this corresponds to finding the eigen-
vector with largest eigenvalue λ1 of the N × N -matrix
A = X · XT . Since we are only interested in the value
of the residual sum D2, the eigenvector u is not explicitly
needed, as uT ·X ·XT · u = λ1. Hence, D2 is then given
by

D2 = |x1|2 + |x2|2 − λ1 = trace(A)− λ1 (15)

With the 2× 2-matrix

B = XT ·X =
[

xT1 x1

xT1 x2

xT1 x2

xT2 x2

]
=
[
a

b

b

c

]
(16)

we also have trace(A) = trace(B) = β1 +β2, where β1 and
β2 are the larger and smaller eigenvalue of B, respectively.
Hence,

D2 = trace(B)− λ1 (17)

Note now that the matrix A = X ·XT is rank deficient:
both X and XT are of rank two, therefore, rank(A) = 2.
Consequently, A has only two nonzero eigenvalues λ1 and
λ2. Furthermore, the eigenvalues of A are the squared
singular values of X, which are also the eigenvalues of B
[16, p. 55]. Therefore, β1 = λ1, and (17) becomes

D2 = β2 =
a+ c

2
−
√

(a+ c)2 − 4(ac− b2)
2

(18)

which is easily computed.

3.2 The Significance Test

Testing the null hypothesis H0 can be stated as testing
whether or not the residual sum D2 can be explained by
a given camera noise model. The difference vectors d1

and d2 reside in a N − 1-dimensional subspace which is
orthogonal to u. For simplicity, we model the camera noise
as white, zero mean and Gaussian distributed with known
variance σ2

0 . Then, if |x1| and |x2| are not too different,
the probability density function (pdf) p(T |H0) of the test
statistic T = D2/σ2

0 is approximately a χ2-pdf with N −1
degrees of freedom. For the significance test, we specify
an acceptable false alarm rate α, from which the decision
threshold t is determined by

α = Prob(T > t|H0) =
∫ ∞
t

p(T |H0)dT (19)

using a χ2-table for N−1 degrees of freedom. If T exceeds
t, we reject H0, and assign the label c for changed to the

window centre, otherwise, we accept H0 and assign the
label u for unchanged. This is expressed by

T
c
>
<
u

t (20)

Eq. (20) leads to a global decision threshold. In the follow-
ing, we show how (20) can be modified towards employing
an adaptive decision threshold.

4 Adaptive MAP Change Detec-
tion

The illumination-invariant test statistic D2 can straight-
forwardly be integrated into our earlier MAP-based frame-
work for change detection [6, 7]. To this end, the sought
change masks are modelled as realizations of Gibbs-Markov
random fields in such a way that compactly shaped masks
are preferred over ragged and noisy ones. The only ad-
ditional parameter then is a so-called positive-valued po-
tential B, which specifies interactions between the labels
of adjacent pixels. The details can be found in [6, 7, 17],
we give here only the algorithm.

To determine the label q(i) at pixel i, i.e. to decide
between q(i) = c and q(i) = u, we first calculate the
value of test statistic D2(i) from the observed grey lev-
els inside the sliding window centred at i. We then count
the number νc(i) of pixels labelled as “changed” in the
3 × 3-neighbourhood of i (see Fig. 2). Performing e.g. a

i

Fig. 2: 3×3-neighbourhood of a pixel i, with its causal neigh-
bours shown shaded.

raster scan from the upper left corner to the lower right,
these labels are known for the pixels left and above pixel i
at the time of processing pixel i (causal neighbourhood).
As estimates for the pixels in the noncausal part of the
neighbourhood we simply take the labels from the pre-
vious change mask, which, in real-time image sequences,
tends to be similar to the new one. Note that this constel-
lation emerges automatically when overwriting the previ-
ous change mask pixelwise during the computation of the
new one. Thus, 0 ≤ νc(i) ≤ 8. The adaptive decision rule
is then given by

D2(i)
c
>
<
u

σ2
0 · (t+ (4− νc(i)) ·B) (21)

where t is determined according to (19). The nine differ-
ent values of the adaptive threshold can be precomputed
and stored in a lookup table. The adaptive threshold is
the lower, the larger νc(i), i.e. a decision for q(i) = c is
favoured the more, the more changed pixels are found in
the immediate neighbourhood of i. Clearly, this behaviour
favours the outcome of smoothly shaped change masks.



5 Results

Fig. 3 shows two successive frames of a sequence in which
a beam of light is moved quickly across the scene. With a
sliding window of 5× 5 pixels to calculate the test statis-
tic (i.e. N = 25), the illumination-sensitive algorithm of
[7] evidently detects both moving objects and illumination
changes. Fig. 3 d) has been computed with the adaptive
version of our illumination-insensitive algorithm according
to (21), which clearly detects the moving objects without
reacting to the variations of illumination. Here, the sig-
nificance level α was set to α = 10−6 yielding a threshold
t of t = 72.2. The potential B was set to B = 3.5.

a) b)

c) d)

Fig. 3: a), b): Subsequent original frames from a sequence
with moving toy engines. A beam of light crosses this scene
quickly from left to right. c) Result of the illumination sensitive
change detection algorithm in [7], mixing illumination changes
with the moving engines. d) Result of the TLS-based illu-
mination invariant change detection. The engines were safely
detected, but not the illumination changes.

6 Conclusions

Based on a tractable image formation model, we have de-
rived a new test statistic for the detection of changes which
is insensitive to variations of illumination. We also de-
termined the distribution of this statistic given the null
hypothesis, and designed a hypothesis test. We then inte-
grated this test into an earlier adaptive framework which
allows to exploit prior knowledge about typical motion
masks. Future work is geared toward extensively evaluat-
ing the algorithm, and comparing it to other approaches,
e.g. [17], or [14, 15], where a homomorphic prefilter was
used.
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