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Résumé –
Les images satellitaires sont échantillonnées dans une grille qui est légèrement perturbée, à cause des micro-vibrations de l’instrument lors de

l’acquisition. Cette perturbation peut être estimée très précisément, mais elle doit aussi être corrigée dans l’image pour certaines applications de
stéréoscopie. Dans cette article on montre que les futures satellites en développement au CNES satisfont les conditions requises par la théorie
de l’échantillonage irrégulier pour permettre un reéchantillonage stable dans la grille régulière, tandis que la plupart des systèmes imageurs
actuels ne le permettent pas à cause d’un niveau trop élevé d’aliasage. A continuation on fait une révision des algorithmes de reconstruction
disponibles, et on propose un nouveau algorithme, qui est mieux adapté aux conditions d’échantillonage des futurs satellites. On montre que
dans ces conditions l’algorithme proposé est environ deux fois plus rapide que d’autres algorithmes plus généraux.

Abstract –
Satellite images are sampled on a slightly perturbed grid, due to micro-vibrations of the instrument during capture. This perturbation can be

estimated with high accuracy, but it must be also corrected in the images for certain stereo and multi-spectral applications. In this work we show
how future satellites being developed at CNES satisfy the conditions required by irregular sampling theory to make the problem of resampling
on a regular grid well posed, whereas must current imaging systems do not allow for such a well posed reconstruction due to aliasing. Then we
discuss the available reconstruction algorithms and propose a new one, which is better adapted to the sampling conditions of such satellites. We
show that under such conditions, the proposed algorithm is about twice as fast as other state-of-the-art algorithms.

1 Introduction.

Satellite images are not sampled on an exactly regular grid, but
rather on a slightly perturbed grid. The sources of these pertur-
bations include: micro-vibrations of the satellite while it takes
the image, and irregularities in the position of the sensors on
the image plane. For certain satellite images, the combined ef-
fect of these perturbations can be automatically estimated for
each image, by different means developed at CNES, and their
amplitude is about 0.1 pixels.
Whereas this is a quite small, almost unperceptible perturba-
tion, it must be taken into account by algorithms which inter-
polate these images to obtain subpixel accuracy. Such an ex-
ample is the production of highly accurate DEMs from stereo
pairs, or superresolution of panchromatic images from multi-
spectral images. These applications require image registration
with an accuracy even finer than 0.1 pixels in the disparity map.
To achieve such an accuracy, the micro-vibrations in the origi-
nal image sampling must be corrected before registration.

In this work we study the problem of resampling the im-
age on a regular grid, given its samples on perturbed grid and
the corresponding perturbation. We note that this perturbation
can be obtained with a high level of accuracy from cues given
both by gyroscopes mounted on the satellite and by analyz-
ing the images themselves [5]. Nevertheless we shall not deal
here with the estimation of the perturbation (i.e. the position of

the sampling points in the irregular grid), and we shall rather
assume that the irregular grid is given with a high level of ac-
curacy.

The article is organized as follows. First (section 2) we study
the review the conditions required by irregular sampling theory
to make the reconstruction problem well-posed, and we analyse
how these conditions apply to satellite imaging systems. Then
(section 3) we review some state-of-the-art reconstruction al-
gorithms and point out the characteristics of satellite images
that are not exploited by these systems. Next (section 4), we
propose a new algorithm, based on a pseudo-inverse iteration,
which better exploits these characteristics. Finally, we discuss
the results of our simulations (section 5).

2 Existence of a stable reconstruction for-
mula.

Kadec, and later Chui and Shi [8, 1] showed the existence
of a stable reconstruction formula for a band-limited function���������
	��
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is unknown in the general two-dimensional case, but
the proposition is valid in general for
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special kinds of perturbation it is valid for
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[4].
Most current satellites do not allow such a reconstruction

from an irregular sampling grid because they produce highly
aliased images1, thus failing to satisfy the band-limited assump-
tion in Shannon’s and Kadec’s sampling theorems. The ac-
quisition system of future satellites under study at CNES [6],
however, has been designed to satisfy the two hypotheses of
Kadec’s theorem: on one hand, the transfer function of the in-
strument is such that the image is almost2 correctly sampled at
the Nyquist rate, and on the other hand the perturbations of the
sampling grid are around 0.1 pixels which is below the constant3

in Kadec’s theorem. This motivates the interest in algorithms
for reconstructing the samples

�#�%0��
on the regular grid, form

the samples
�#�%$ &��

on the perturbed grid, and the knowledge of
the perturbed grid

$ &
.

3 Available Reconstruction Algorithms.

Whereas the demonstration of Kadec’s perturbed sampling the-
orem is constructive, the reconstruction formula it provides is
not attractive from a computational point of view.
Even though the algorithmic reconstruction problem has been
largely studied in the literature, the work concentrates to a large
extent on the one-dimensional irregular sampling problem [2],
and it only extends to two dimensions when the perturbation is
separable, which is not the general case for satellite images.
Among the algorithms which are valid for a general two di-
mensional perturbation, the one developed by Gröchenig and
Strohmer [3] is the best performing one, to the best of our
knowledge, but it assumes a completely irregular gridwhereas
satellite images: (i) are sampled on a more specific perturbed
grid
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; and (ii) the perturbation function

�
is not

only bounded by a constant smaller than the Kadec constant
3

,
but it is also very smooth with respect to

�
, i.e. �� is usually con-

centrated in
� �
	� ��	� �!� where 
�� 9

is typically in the order
of 10.

4 Pseudo-inverse Algorithm.

For the reasons outlined in the previous section, we developed
a the following reconstruction algorithm, which better exploits
the sampling conditions that arise in CNES’s future satellites.

We note by � 5�� *�,�� � the ideal distribution which would
result from sampling the original image

�
on the regular grid.

The irregular grid is - �����'� - �
� and we note by �� 5�� *2,������ *�,�����
the distribution that results from sampling the original image�
on the perturbed grid. Since

�
is band-limited (i.e. �
����� � ���� �� ������� �!�

), �� can be easily obtained from � by sinc convolution
and sampling on the perturbed grid:�� 5�� � � 5 � * , ����� * , ��� � �"!$#&%(')� � 8 (1)

In the following we shall abbreviate this convolution-sampling
pair by the operator

� �
. This is the operation performed by

1About 18% of the image energy may be due to aliasing
2By almost correctly sampled we mean that energy of the image that lies

outside of the sampling grid’s reciprocal cell is below the noise level. In the
case of CNES satellites this aliasing represents about 1.5% of the image energy,
which is at about the same level as the noise.

the satellite when it samples on a perturbed grid due to micro-
vibrations. What we look for is to obtain � from �� , i.e. we look
for the inverse of

� �
, which is still a linear operator, but not

a convolution-sampling pair. Nevertheless we can approximate
the inverse operator by a convolution-sampling pair (that we
shall call

�+*
) as follows:� ��,"� 5�� * �� 5�� *2, * ��� *�,���� � �"!$#&%('��� � 8 (2)

In the following we shall assume that this is a good approxima-
tion to the inverse operator, in the sense that:� * � � 5 ��-/�/.��

, with 0 . 0 1�1 1/149�8
(3)

We obtained strong experimental evidences for this conjecture,
which is the basis for the convergence of our reconstruction al-
gorithm. Note also that in the case of constant

�
,
�2*

is actually
the inverse operator and

. 567
. Since

�
is very smooth (locally

constant) we should have small values of
1
.

Under conjecture (3) � ��,"� in equation (2) gives a good esti-
mate of � , namely � ��,"� 5 ��-/��.�� � , so the relative approxima-
tion error 03� ��,"� � �&034&03�&0 151 is small. But we can arbitrarily
increase the approximation order by the following iteration:� � 67� 5 . � � 6 * ,"� � � ��,"� 5 ��-/��. 6 � � (4)

so the relative error is bounded by
1 6

at the
�

-th iteration. In
practice the operator

.
is applied in two steps: First, a simu-

lation �� � 6 * ,"� of the perturbed image from the current estimate� � 6 * ,"� of the regular image:�� � 6 * ,"� 5 � � � � 6 * ,"��8 (5)

and secondly a correction of the errors found in this simulation
with respect to the known perturbed image �� :� � 67� 5 � � 6 * ,"� � � * � �� � 6 * ,"� � �� � 8 (6)

4.1 Numerical Approximation

The pseudo-inverse method described above involves one ap-
plication of the operators

� �
and
��*

per iteration. These op-
erators involve a convolution with the infinite sinc filter, which
in practice has to be truncated at some point. Since this convo-
lution is non-separable (because we will sample the convolved
image on a non-regular grid), it is important to approximate the
sinc filter by a small compactly supported one, which avoids
truncation artifacts. Whereas a common practice consists of
damping the sinc filter by a Gaussian

�"!$#&% ��92�(: 9;=< *?> ,,�@ , �"!$#&% ��92� (7)

and then truncating at say
9 55��A

, a nearly optimal compactly
supported approximation is given by the cardinal B-spline [7]:

�"!$#&% : B � CD�E F�G 5�H * ,JI �B � CD�K �MLN O * L �B � CD� ��P/� � ��Q%�)R (8)

where the S -th order B-spline is defined by the recursion
B � CD� 5B �$T�� ' B � C * ,"� , B �$T�� 5VU)W *�X,)Y X,[Z . In any case the operator
. 5��*�� � � -

in equation (4) will be approximated in our algo-
rithm by

.]\ 5V� *\ � �\ � -
, whereas in equation (2) it will be

approximated by
.]^\ 5�� *\ � � ��-

, since the first application
if
� �

is performed by the acquisition system, not by our al-
gorithm. It is easy to show that _$!$` \�a�T�.�\ 5 _$!$` \�a�T�.�^\ 5



.
where � 5 9 4 A for the damped sinc approximation, and� 5 9 4�S for the cardinal B-spline approximation. Hence

for a sufficiently small � we shall have 0 .(\ 0 1 161 9
and0 . ^\ 0 1 1 1 9

. To summarize, the iterations with the numeri-
cal approximation of the sinc filter are as follows:� ��,"�\ 5 ��-/��. ^\ � � (9)� � 67�\ 5 .�\ � � � 6 * ,"�\ � � ��,"�\ (10)

5 I - � I 6 * �� � O , .
�\ R ��.�\ �/. ^\ ���/. 6 * ,\ . ^\ R � �

Observe that the relative error 03� � 67�\ � �&034&03�&0 still has a term0 . 6 * ,\ .�^\ 0 1 1 6 that decreases geometrically with the itera-
tions, but a second term appears which may increase with the
iterations but is bounded by �, * � 0 .�\ ��.�^\ 0 . This second term
can be kept below the noise level as long as

1�1 9
and � is

sufficiently small.

5 Experiments.

In order to test the efficiency of the proposed method we con-
structed a set of simulated satellite images. We started from a
very high resolution aerial image � which was later convolved
with the transfer function of the satellite to obtain the “analog
image”

� 5�� '�� , which is nearly band-limited, and can be
safely sampled at the Nyquist rate to obtain the regular image� 5 � *2, � �

. Then we used a given perturbation function
�
,

such that �
����� � ���� � � � 	,"T � 	,"T �!� , and
. � .�1 7�8:9

, to simulate the
perturbed image by a variant of equation (1):�� 5�� �\ � �	� 8 (11)

The only differences with equation (1) is that: (i) we added a
white noise

� 3 in order to simulate the level of noise that will
be added by the satellite sensors, and (ii) the resampling oper-
ator
� �\ is not infinite, it is rather approximated by a Gaussian-

damped sinc with a very large standard deviation
A 5493��7

pix-
els.

Then we used both Gröchening’s algorithm and the proposed
algorithm with a Gaussian damping (

A 5 �
) and a cardinal B-

spline (order S 5 9�9
) approximation of the sinc filter. Fig-

ure 1 shows the approximation error 03� � 67� � �&0 4 as a func-
tion of the number of floating point operations (flops) per pixel
performed by each algorithm. Observe that the proposed al-
gorithm reaches an error level comparable to the noise level
after only one iteration (152 flops/pixel with B-splines, or 625
flops/pixel with Gaussian damping), whereas Gröchenig’s al-
gorithm requires 420 flops/pixel to achieve the same error level.
Do also observe how the error increases later, but stabilizes at
a constant level as predicted by equation (10).

An extensive series of tests on several images realistic simu-
lations of future satellite images, as well as synthetic examples,
with different transfer functions, noise levels, and perturbation
functions, confirmed that the algorithm converged in all cases.
In addition in all realistic cases the pseudo-inverse algorithm
converged with a number of flops about 2-3 times smaller than

3The noise standard deviation is about 0.8 gray-levels, and the energy of 

represents about 2% of the energy of �

4 � � � is about 30
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FIG. 1: Approximation error as a function of flops/pixel for
the proposed Pseudo-inverse algorithms and Gröchenig’s algo-
rithm.

Gröchenig’s algorithm. When the noise level is significantly
smaller and the spectral contents of the image near the Nyquist
frequency is more important (which is not the case for natural
images), however, Gröchenig’s algorithm converged faster, be-
cause in that case the pseudo-inverse algorithm requires more
iterations to converge, and each iteration requires a higher or-
der B-spline filter, which takes even more operations per iter-
ation. Nevertheless, even in this case, we could accelerate the
performance of the pseudo-inverse algorithm, by starting with
low-order B-spline filters and increasing its size as needed dur-
ing the iterations.
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