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Résumé - Dans cette communication, nous présentons le problème de détection automatique d’ondes sur un enregistrement non stationnaire,
à partir d’une approximation polynomiale fondée sur des algorithmes génétiques. Cette approximation est estimée en minimisant une fonction
d’erreur non linéaire, correspondant à l'équation du cercle. Nous appliquons cette approche pour détecter les fuseaux de sommeil dans les
électroencéphalogrammes (EEG), l’ondeR et les battements ectopiques dans les électrocardiogrammes (ECG).

Abstract – This article deals with the problem of on-line wave detection in non-stationary signals, through a polynomial approximation
based on genetics algorithms. This approximation is estimated by minimising a nonlinear error function, described by the circle equation. We
apply this approach to detect sleep spindlewaveforms in electroencephalograms (EEG) and R wave and ectopics beats in electrocardiograms
(ECG). Theproposed method makes it possible to recognise time-variant waveform with a simpledecisional parameters.

1. Introduction
A great deal of attention has been paid to on-line wave

detection problem in non-stationary signals. Several
approaches were developed in the literature, particularly in
biomedical applications. When using over-parameterised
models such as those proposed in [1] and [2], a priori
knowledge of the signal is necessary to complete the
detection. As nonlinear models are used, a set of meaningful
parameters is necessary for typical classification and/or
discrimination task. In addition, baseline, artefacts and noisy
signals require signal pre-processing. Automatic detection
cannot therefore be completed due to the high computational
cost of the methods.

To discern these drawbacks, we propose a new approach
based on nonlinear approximations, operating in two steps:
1. the pattern to be detected is approximated by a

polynomial function, which is estimated by using Genetic
Algorithms (GAs). The model parameters, named
«descriptors», are estimated by minimising a nonlinear
distance function. This distance is derived from the
Hausdorff’s neighbouring [3] and corresponds to the
circle equation.

2. The detection is completed by comparing the polynomial
function and the analysed signal.

The remainder of the paper is organised as follows: In
section II, the theoretical basis dealing with the minimisation
of the quadratic nonlinear distance are introduced. More
particularly, we define the polynomial approximation, the
proposed distance function and present the approach to
estimate the model parameters. In section III, we provide
further details about the two steps of the nonlinear
approximation proposed. In section IV, presented method is
used to detect patterns in sleep electroencephalogram (EEG)
registers [4] and high-resolution electrocardiogram (HRECG)

database [5]. Comments and conclusions are given in the last
section.

2. Theoretical Basis
Consider a functional relation, which defines a

transformation ().T of a segmented pattern x. This
transformation provides a set of values y, by means of a
metric function or distance ( )yxd , . This function is a notion
of «proximity» between the signal x and its transformation y.
Minimising this distance provides the best functional
transformation ( )xTo .

Assume that ( )oT is applied to the analysed signal ax ,
which has the same length asx.

The level of «neighbourhood» between x and ax can be
evaluated through a comparative analysis between their error
functions. The analysed signal and the pattern are associated
providing ( )aa yxd , and ( )yxd , are similar. Detection can
then be carried out.

2.1 Definition of thesignal transformation
Consider the observation vector [ ]Mxxx ,...,1= associated

to the «neighbouring function», { } ℜ∈= = Miii xTy ,...,1)( . Our

purpose is to determine the transformation T .
We propose a polynomial approximation of

[ ]Myyy ,...,1= :

( ) i
T
n

p

n

n
inii xaxaxTy === ∑

=0

. (1)

where na denotes the weight coefficient vector or descriptor:

[ ]Tpn aaaa ,...,, 10= . (2)

The descriptor is estimated by minimising the distance
function.



However, choosing this transformation for x and another
vector built with { } Miix ,1= provide the same minimal error.
For this reason, we must introduce the sequential information
by modelling the pattern, as follows:
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2.2 Distance function proposed
Let E be a metric space with a defined distance function

( ).,.d , and S a sub-set of E . Searching an approximation of
an element Ey∈ for an element Sg ∈ , consists in
determining g such that [6]:
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If this element exists, g will be is the best approximation
of y in S , within the meaning of the distance ( ).,.d .

There are several distances proposed in metric space,
essentially in the construction and systematic treatment of the
geometries [7,8].

Hausdorff’s neighbourhood [3,8,9] defines the most basic
concept of «proximity» between functions: «In ℜ, the set
J=]a,b[ of real numbers such that a < x < b is an open part
(open interval). This is an open neighbourhood of all points
of J. If it closes this part, we obtain the closed intervals
K=[a,b] . So, J is the interior of K…» for every ES ⊂ , and

a scalar 0>r , an open neighbourhood of S , )(SNr , is

defined as [8]:

},),(:{)( SarbadistbSNr ∈<= . (5)

For any two subsetsA and B from space S , the Hausdorff’s
distance, h(A,B), is therefore defined in terms of the
neighbourhood [7] as follows:

)}(&)(:inf{),( ANBBNArBAh rr ⊂⊂= , (6)

where inf{Φ} denotes the greatest lower bound of a set Φ.
This definition generates balls in ℜ2 spaces. These are

convex compact curves, which satisfy the properties of
distance function in metric space [9]:
9 Positiveness: dist(A,B) ≥ 0. If dist(A,B)=0, then A=B

9 Symmetry: dist(A,B) = dist(B,A).

9 Triangle inequality: dist(A,C) ≥ dist(A,B)+dist(B,C)

Therefore, we propose a metric space S with a distance
function ( ) [,0[:, ∞→SxSyxe , expressed by circle equation

with ratio r, like a convex compact curve distance [10]. This
means :
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This nonlinear error function limits the signals energies into
a compact space. Module of the vector, shaped between the
points x and y, circumscribes a surface of regular geometry,
i.e. a circle (Figure 1).

To guarantee the convergence during the parameter
estimation process, the pattern signal must be normalised in
the interval [-r, r].

FIG. 1 : Geometric interpretationsof circle of radius r used as
convex compact curve distance, {dc}.

2.3 Method of parameter estimation
We choose a non-probabilistic method to estimate the

descriptor. It is the genetic algorithms (GAs). The best
descriptor minimises the quadratic nonlinear error established
in equation (7).

GAs are a robust search technique inspired in Darwin’s
theory, which solves the multidimensional optimisation
problems by implicit parallelism [11]. GAs operate in four
steps:
(a) Random population generation, in which a set of

specimens is created initially. Each specimen encodes a
weight coefficient vector with random polynomial order.

(b) «Fitness» evaluation, which defines the specimen
capacity for detection.

(c) Iterative generation of new specimens. It includes parent
selection, crossover, mutation, accepting and replacement
into population

(d) The iteration process is carried out as long as the best
fitness isgreater than 90%.

For a pattern x with length L , the fitness isdefined by:
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The GAs setting parameters include [11] the mutation rate,
the population size, the parent selection mechanism as
roulette wheel, rank, steady state or elitism; and the crossover
method.

3. Methodology used
Thisapproach operates in two steps.
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3.1 Descr iptor estimation
In equation (7), we take 1=r to define the error criterion

as the unitary circle. We therefore normalise the pattern
signals to [-1,1] interval to assure the estimation convergence.
In addition, normalized pattern signal is modulated in time
using equation (3).

The genetic algorithms (GAs) search the best specimen by
minimising error criterion. This is the descriptor associated to
a fitness value greater than 90%. The setting of GAs is: 0.2%
of rate mutation, population size of 60 specimens, parent
selection for elitism and single point crossover scheme.

3.2 Pattern recognition
The signal register is analysed in a 1-sampled moving

window, which has the same length L as the pattern signal.
We calculate the fitness during each analysed window using
expressions (1), (7) and (8). Each fitness value is assigned to
the central point of the window.

Detection signal is obtained from the fitness analysis. A
pulse of high fitness (> 90%) makes it possible to detect the
pattern in the analysed signal.
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FIG. 2 : Averaged beat (left) from ECG and Spindle (right)
from EEG.

4. Examples
We apply this approach in ten ECG registering and three

sleep-EEG signals, to recognise the waveforms given in
figure 2. These are:
… Average beats from high resolution ECG, acquired using

orthogonal electrode leadsX, Y, Z.
… Sleep spindle waveforms from 3mn-EEG registers

obtained with 10-20 international electrode systems.

4.1 Application to electrocardiography
In ECG, R wave correspond to ventricular contraction

events [4]. Measurement of R-R intervals make it possible to
investigate diagnosis issue, as the Heart Rate Variability
(HRV).

In this approach, R wave is detected when the pulses in
fitness plot are greater to 90% and occurs a maximum
variation into PE. Analysing moving window and pattern
signal haves the same length: 600 samples. Figures 3 and 4
show the resultsof thisexample.
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FIG. 3 : R wave detection using the 8-th order descriptor: (a)
ECG register from healthy person (upper); (b) Detection

signalsof R wave (centre). (c) Fitness function evaluated via
unitary (lower). Line represents the level of maximum fitness.
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FIG. 4 : R wave detection using the 8-th order descriptor: (a)
ECG register from unhealthy person (upper); (b) Detection

signalsof R wave (centre). (c) Fitness function evaluated via
unitary (lower). Line represents the level of maximum fitness.

level of maximum fitness.

4.2 Application to electroencephalography
There are three phases in sleep EEG signals: the waking

(W), quiet sleep (QS) and rapid eye movement (REM). In
addition, there are four stages in the QS phase. Superposed
bursts or noise-free waveforms with periodic, quasiperiodic
and complex oscillations characterize the stage 2 of QS
phase. These waves specifically are named spindles and K-
complexes.
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The spindles have a frequency band from 11 to 115 Hz,
duration from 0,5 to 1,5 s and amplitude between 15 to 25 µV
[3].

The detection is derived from fitness plot selecting the
pulses with duration between 0.5 and 1.5 seconds (duration of
spindles); and with fitness> 95%.
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FIG. 5 : Spindle detection in EEG using a 11-th order
descriptor: (a) EEG register (upper) with the annotationsof
spindle segments (pulses); (b) Fitness function (centre). Line

represents the level of maximum fitness; (c) Polynomial
evaluation (lowest) and Detection signal (pulses).

5. Discussion and conclusion
The transformation proposed in this approach is a nonlinear

approximation of a neighbouring function from pattern signal.
The approximation response follows the pattern without
performing a complete matching. A comparison of the
distance functionsevaluate the «nonlinear proximity» between
the pattern and the registering. In this approach, detection is
based on response model (polynomial evaluation) and
description capacity (fitness function). The combination of
this information offers a most robust detection process.
segments during recognition process. Baseline and time-
varying features of signal do not affect the detection capacity
of thismethod.

Once the descriptor have been estimated, computational
cost of detection involves trivial process, as a polynomial
evaluation and a small number of discrimination tasks. These
are an improvement for on-line applications.

In addition, the parameter estimation based on GAs does
not involve statistical approximation and can estimate the
polynomial order by minimising the error criterion.
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