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Abstract — A general result about the quality of approximation of the mean of a distribution by its empirical estimate is
proven that does not involve the dimension of the feature space. Using the kernel trick this gives also bounds the quality of
approximation of higher order moments. A number of applications are derived of interest in learning theory including a new
novelty detection algorithm and rigorous bounds on the Robust Minimax Classification algorithm.

1 Introduction

Many statistical analyses rely on estimating the moments
of a distribution from a sample. The core result of this
paper is a measure of the quality of the estimation of the
mean of a distribution through a bound on the norm of
the error between the true mean and the empirical one.
The bound has the flavour of learning theory bounds in
that it does not involve the dimension of the feature space
but rather a bound on the radius of the ball containing
the support of the distribution. The result is therefore ap-
plicable in feature spaces defined by a kernel, the type of
representation ubiquitous in kernel-based learning meth-
ods.

The second key ingredient of the paper is the observa-
tion that higher moments are just means in the feature
spaces defined by polynomial kernels of the appropriate
degree. This implies that the basic result gives as corollar-
ies bounds on the errors made in estimating higher order
moments.

Many learning algorithms make explicit or implicit use
of means and covariances of the input distribution. Our
basic theorem can therefore be used to derive a number of
interesting learning theoretic results. These include new
novelty detection algorithms based on the empirical mean
and covariance matrix.

A more explicit use of the mean and covariance of a
distribution was made in an algorithm recently proposed
by Lanckriet et al. [1]. Their algorithm known as Robust
Minimax Classification optimises the probability of mis-
classification subject to the assumption that the empirical
and true means and covariances coincide. Our bounds on
the differences between the true and empirical estimates of
these quantities mean that we can provide rigorous bounds
on the generalisation error of their algorithm.

The paper is organised as follows. Section 2 presents the
core theoretical result. Section 3 applies it to a simple nov-
elty detection algorithm and introduces the link between
higher order moments and polynomial kernels. This gives
a bound on the accuracy of estimates of higher order mo-
ments. Section 4 applies the results to give bounds on the
Robust Minimax Classification algorithm of Lanckriet et
al. [1]. We finish with some conclusions.

2 Base Result

The first question we will consider is that of the stability
of a fixed function of a finite dataset. In other words how
different will the value of this same function be on another
dataset generated by the same source? The key property
that we will require of the relevant quantity or random
variable is known as concentration. A random variable
that is concentrated is very likely to assume values close
to its expectation as values become exponentially unlikely
as a function of their distance from the mean. For a
concentrated quantity we will therefore be confident that
it will assume very similar values on new datasets gener-
ated from the same source. This is the case, for example,
for the function ‘average height of the female individu-
als’ used above. There are many results that assert the
concentration of a random variable provided it exhibits
certain properties. These results are often referred to as
concentration inqualities. Here we quote one of the best
known theorems that is usually attributed to McDiarmid.

Theorem 1 (McDiarmid [2]) Let X1, ..., X, be indepen-
dent random wvariables taking values in a set A, and as-
sume that f : A™ — R satisfies
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Then for all e > 0,
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Another well-used inequality that bounds the deviation

from the mean for the special case of sums of random

variables is Hoeffding’s Inequality. We quote it here where

it will be seen to be a simple special case of McDiarmid’s
Inequality for the case where

(X1, Xn) =) X (2)

Theorem 2 Hoeffding’s Inequality. If X1,..., X, are
independent random variables satisfying X; € [a;, b;], and
if we define the random variable S, = > .| X;, then it
follows that
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As an example consider the average of a set of £ in-
stances 71,72,...,7¢ of a random variable R given by a
probability distribution P on the interval [a,b]. Taking

X; = r;/0 it follows in the notation of Hoeffding’s In-
equality that

P{|S, —E[S,]| > e} <2exp <

¢
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where IE[R] denotes the sample average of the random vari-
able R. Furthermore

so that an application of Hoeffding’s Inequality gives
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indicating an exponential decay of probability with the
difference between observed sample average and the true
average. Notice that the probability also decays exponen-
tially with the size of the sample.

The example of the average of a random variable raises
the question of how reliably we can estimate the average
of a random vector ¢(x), where ¢ is a mapping from the
input space X into a feature space F corresponding to a
kernel k (+,-). This is equivalent to asking how close the
centre of mass of the projections of a training sample

,Xe} (7)

S ={x1,x2,...

will be to the true expectation

Ex[6(x)] = /X $(x)dP(x), (8)

where P(x) is the probability distribution generating the
data with support

supp(P) = {x: P(x) > 0}.

We denote the centre of mass of the training sample with

bs = % Z B(x;)- 9)

We introduce the following real valued function of the
sample S as our measure of the accuracy of the estimate

9(S) = ||és — Bx[6(x)]|| -

We can apply McDiarmid’s theorem to the random vari-
able g(S) by bounding the change in this quantity when
x; is replaced by x/ to give S’

908~ 98] = [15s ~ Exlo(e)]] ~ |55 ~ Exlotol|
|85 — s/ = 7 llotxi) — o6l < 5

(10)
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where R = SUPx esupp(P) ||¢(X)|| Hence, a'pplylng MecDi-
armid with ¢; = 2R/¢, we obtain

Po(S) - Bsla($)] = 0 <o (<35 ). ()

We are now at the equivalent point after the application
of Hoeffding’s inequality in the one dimensional case. But
in higher dimensions we no longer have a simple expres-
sion for Eg[g(S)]. We need therefore to consider the more
involved argument (see explanation below)

Eslg(S)] = Es[||¢s —Ex[¢(x)]||] =Es [||¢s — Eglés]]|]
= Es [||Fjg[<55 — ¢3ll]] <Egz |65 — o3]]
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We now give an explanation of the stages in this deriva-
tion. The second equality introduces a second random
sample S of the same size drawn according to the same
distribution. Hence the expectation of its centre of mass
is indeed the true expectation of the random vector. The
expectation over S can now be moved outwards in two
stages, the second of which follows from an application
of the triangle inequality. The next equality makes use
of the independence of the generation of the individual
examples to introduce random exchanges of the corre-
sponding points in the two samples. The random variables



o ={o1,...,00} assume values —1 and +1 independently
with equal probability 0.5, hence either leaving the effect
of the examples x; and X; as it was or effectively inter-
changing them. Since the points are generated indepen-
dently such a swap gives an equally likely configuration
and averaging over all possible swaps leaves the overall
expectation unchanged. The next steps split the sum and
again make use of the triangle inequality together with
the fact that the generation of S and § is identical. The
movement of the square root function through the expec-
tation follows from Jensen’s inquality and the concavity
of the square root, while the disappearance of the mixed
terms 0,;0;k(x;,x;) for i # j follows from the fact that
the four possible combinations of —1 and 41 have equal
probability with two of the four having the opposite sign
and hence cancelling out.

Hence, setting the right hand side of equation (11) equal
to 4, solving for €, and combining with equation (14) gives
the following result.

Theorem 3 Let S be an ¢ sample generated independently
at random according to a distribution P. Then with prob-
ability at least 1 — § over the choice of S, we have

| < % <2+ 21n(1$>. (15)

This shows that with high probability our sample does in-
deed give a good estimate of E[¢(x)] in a way that does
not depend on the dimension of the feature space. Note
that the introduction of the random {—1,+1} variables
o; play a key role. Such random numbers are known
as Rademacher variables. They allow us to move from
an expression involving two samples in equation (12) to
twice an expression involving one sample modified by the
Rademacher numbers in equation (13).

|65 — Ex[o(x)]

3 First Applications

We have shown that the centre of mass of the training
sample is indeed a good estimator for the true mean. We
first give an example of using this result to motivate a
simple novelty detection algorithm that checks if a new
datapoint is further from the true mean than the furthest
training point. The chances of this happening for data
generated from the same distribution can be shown to be
small, hence when such points are found there is a high
probability that they are outliers.

Let d = (dy,...,ds) be a vector of £ real numbers. We

introduce the notation
percent(d, o) = argmin{d; : |{j : d; < d;}| > ol}.

This is the a percentile of the sequence of numbers, so
that for example

percent(d, 1) = maxd,

and percent(d, 0.5) is the median of the sequence.
If we consider the training set as a sample of points

that provide an estimate of the distances dy,...,d; from
the point E[¢(x)], where
di = [|o(x:) — E[p(x)]]], (16)

we can bound the probability that a new random point
X1 satisfies

o1 = [|¢(xe41) — E[o(x)]|| > percent(d, a),  (17)
with
P{ll¢(xes1) —E[p(x)]| > percent(d, o)}
= P{dsy1 > percent(d, o)}
{4+1—aof o}
L e A B =
- {41 “ty +1’
by the symmetry of the i.i.d. assumption. Though we

cannot compute the distance to the point E[¢(x)], we can
compute

L
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Then we can with probability 1—§ estimate ||¢(x¢+1) — E[p(x)]]]

using the triangle inequality and equation (15)

l¢(xe1) — E[o(x)]I|
|o(xe41) — bs| — ||os — Elp(x)]]|

= ||¢(xe41) ¢s||\/2R<1+\/1n(15>.

Similarly, we have that for i = 1,...,¢,

di = [lp(xi) — E[p(x)][| < ||¢(x:) — ds]|+]|¢s — Elpx)]| -
(19)

depy1 =

Y

Hence, with probability 1 — ¢

P { [é(xer1) = sl > percent (||¢(xi) — s, ) (20)
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We have therefore proven the following theorem.

Theorem 4 Fiz § > 0. Let S be a sample drawn inde-
pendently according to a distribution P with support in the
sphere of radius R about the origin in feature space. Then
with probability at least 1 — & over the draw of the sample
S, points drawn at random according to P will satisfy the
following bound on their likelihood as a function of their
distance from the empirical mean

1—a+ where ol =

(6%
(+1’

{ o6 = ]| > l90x) — o] + 2,2 <1+ mﬁ) }|

Proof. We apply the argument given above the theo-
rem for ¢ values of a, « = j/¢, j = 1,...,£ using 6/¢ in
place of § in each case. Hence, with probability at least
1 — ¢ all of the bounds hold for the different values of «.
The theorem states the smallest bound arising from the
different applications. m




Our aim is not only to provide applications of the base
theorem but to show how it gives rise to bounds for higher
order moments though a connection to the polynomial
kernel. To this end we consider the second moment and
introduce some additional notation.

The next corollary of Theorem 3 shows that the bound
for the mean can also be applied to the second moment.
Recall that the second moment correlation matrix is de-

fined as
C=E[p(x)p(x)].

Let the empirical estimate of this quantity be

12
ZZ x;)h(x;)".

For two matrices A and B with the same dimension n xm,
we use the notation A o B to denote the Frobenius inner
product

C=E[o(x)

n,m

ij=1
Note that if B is the rank one matrix uu’ then
n,m
AoB= Z Aijuiuj = u’Au.
i,j=1
| of a matrix A is given

IAllr = VAo A.

Corollary 5 Let S be an £ sample generated indepen-
dently at random according to a distribution P. Then with
probability at least 1 — § over the choice of S, we have

2
R\[< +/2 5) (23)

where R is the radius of the ball in the feature space con-
taining the support of the distribution.

Hence, the Frobenius norm || -
by

|&-cl.

Proof. We apply Theorem 3 to the mapping
drx — B(x)9(x)".

Clearly we have
C=E [é(x)} and C=E [QZA)(X)} .

Applying the theorem the result follows since

sup  [lpx)| = sup  [lg(x)6(x)||r
x€esupp(P) x€supp(P)
= s V/o(x)9(x) 0 o(x)d(x)’
x€supp(P)
= sup \/(6(x)6(x) < R?.
x€supp(P)

[
Next consider the covariance matrix defined as

2 =E[(¢(x) - 9)(¢(x) - 9)'] =C —b¢'.
Let the empirical estimate of this quantity be
¥ =E[(¢(x) — ¢5)((x) — ds)'] = C — dsd.

A similar corollary applies to the covariances.

Corollary 6 Let S be an £ sample generated indepen-
dently at random according to a distribution P. Then with
probability at least 1 — § over the choice of S, we have

5o, < 28 (2 yfaud). e

where R is the radius of the ball in the feature space con-
taining the support of the distribution and provided

2
> (24—\/2111(2;) .

Proof. Consider the effect of shifting the origin of the
feature space by a fixed translation vector 1 prior to com-
puting the mean and covariance. Hence the new mean will

be ~ -
bs = ds — 1,
while the new empirical covariance matrix will be

S = E[(060) ¥ - ds)(0(x) ~ v = ds) |
= E[(¢(x) = ¢ — bs +¥)($(x) =t — ds + ¥)']

= 3
Hence, we may assume that the origin has been moved to
the centre of mass of the distribution. Applying Corol-
lary 5 and Theorem 3 each with ¢ replaced by §/2 we
have

[=-=.
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where the last inequality follows from the lower bound on
/. m

Note that the condition on £ is fairly benign. Even if we
take § = 0.01, the bound is equivalent to £ > 27. When
we apply this theorem in later results we will assume that
this condition holds for clarity of presentation.

Our last result of this section again uses the polynomial
kernel trick but this time to obtain a generalisation of
Theorem 4.

Corollary 7 Fiz § > 0. Let S be a sample drawn in-
dependently according to a distribution P with support in
the sphere of radius R about the origin in a feature space
defined by a kernel k(x,z). Then with probability at least
1— 9 over the draw of the sample S, points drawn at ran-
dom according to P will satisfy the following bound on
their likelihood

1—a+ , where
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Proof. The result follows from applying Theorem 4 in
the feature space defined by the polynomial kernel of de-
gree 2 over the base kernel. As observed above the equiv-
alent of ¢g becomes

C.

|

Furthermore,

Cod(x)p(x)" = p(x) Co(x).

The result follows. m

The interesting thing about the bound is that it com-
putes the degree to which a new point is unusual relative to
the covariance matrix, hence taking into account the dif-
ferent degree to which distribution fills space in different
directions in contrast to standard novelty detection algo-
rithms which consider a circular region in feature space.

The expressions can of course be evaluated implicitly
using the kernel since

g (x)I”

while ¢(x)'Co(x) =

|
=
»
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o

4 Robust Minimax Classification

Our next application is connected with a classification al-
gorithm developed by Lanckriet et al. [1]. The basis for
the approach is the following Lemma.

Lemma 8 Let ¢ be the mean of a distribution and X its
covariance matriz, a # 0, b given, such that a’¢ < b and
a €[0,1), then if

b—a'¢ > k(a)Va'Xa,
where k() = /72, then

P(a'¢(x) <b) > a

They also show that the condition becomes an equiva-
lence if we take the infimum of the probability over all dis-
tributions having the same mean and covariance. Lanck-
riet et al.then derive an algorithm that chooses the vector
a and threshold b to minimise the misclassification prob-
ability for a classification problem where the positive ex-
amples have mean and covariance

(%, x)
and the negative examples mean and covariance
(6y,3y)

The algorithm uses the sample based estimates of these
quantities and outputs an error bound that holds under

the assumption that these are the true means and covari-
ances.

We now apply the machinery developed in this paper to
derive a bound on the true error in terms of the error esti-
mate output by the algorithm. The optimisation problem
they solve to optimise the bound is

ky' = min \/a’ﬁ)xa +4/a’3,a  (25)
a'(¢s, — ¢s,) =1,
where we have used Sx (Sy) to denote the set of positive

(negative) training examples. The value of the threshold
is then determined as

, - -
by = A, dx — Key/ AL Exa,

and the resulting bound on the misclassification probabil-
ity (assuming the empirical mean and covariance are the
true mean and covariance) is

2
1 (\/a’*ﬁ)xa* + a’*ﬁiya*)
= 1 + Kz = . N 2 .
1+ (\/aﬁj)xa* + a’*Eya*>

In order to provide a true error bound we must bound the
difference between this estimate and the value that would
have been obtained had the true mean and covariance been
used.

We now prove a version of Lemma 8 involving the em-
pirical mean and covariance.

subject to

1— o,

Lemma 9 Let ¢g be the mean of a sample of £ points
drawn independently according to a probability distribution
P and X its empirical covariance matriz, a # 0 with norm
1, and b given, such that a'¢ < b and o € [0,1). Then
with probability 1 — & over the draw of the random sample,

if
b—a'pg > rVa'Xa,

P(a'¢(x) <b) > a.

then

where a solves the equation

o 2R? / 2 e
. 4R? 2

k2a'da— —— 2+4/2In> |.
\/Z< §

Proof. Define
4R? 2 a2R? 2
T=——(2+/2In= | +—F[2+/2In=].
Ve ( V 5) (1-a)ve ( 5)

We will show the auxiliary result that with probability
1—-4if

(b— a’qgs)Z —k(a)?a’Sa>T (26)

then 9
(b—a'¢)” — k(a)’a’Sa > 0. (27)

We first show that this will imply the lemma. Applying
Lemma 8 we have

P(a'¢(x) <b) > a.



where k(a)? =

K as

72=. But we can express () in terms of
—

k(e)?a'Sa+T = k%a'Sa.
Substituting for x(a) and T gives the result. It therefore
only remains to prove the auxiliary result. It is sufficient

to bound with high probability the difference between the
left hand sides of the two inequalities (26) and (27) by T.

‘(b - a’ggs)Q — k(a)%a'Sa — (b— a’gﬁ)Q + m(a)za’Ea’

< o= sl (26 + |+ dsll) + K(a)? ‘a’fla— a’Za’

< 6= dsl4R + n(@)?|(£ - =) o aa’
< 16— dsl4R +5(@)? £ - 3| [laal|,
< 16— dslR+n@)? -3 .

Now we apply Theorem 3 and Corollary 6 each with § re-
placed by §/2. Substituting the resulting bounds on the
difference between empirical and true means and covari-
ances gives

‘( —aqSS) — a'Ya ( —a(b) k(o )Qa'Z}a‘
S%( ) 101252 (24—1/2111?)
-7,

as required. m

We are now in a position to derive a formula that will
give a bound on the generalisation error of the minimax
classification function in terms of the parameters of the
resulting hyperplane and the empirical covariance matri-
ces.

Proposition 10 Let a, b, be the (normalised) weight vec-
tor and associated threshold returned by the minimaz algo-
rithm when presented with a training set S. Furthermore,
let 3 (ﬁ]y) be the empirical covariance matrices associ-
ated with the positive and negative examples. Then with
probability at least 1 —§ over the draw of the random train-
ing set S of * positive and ¥ negative training examples,
the generalisation error € is bounded by
e <max(l—a*1—aY)

where o', i = X,y solves the equations

ai 2R2 4 ~
—— | —F— + In—- | + ! i
1 : ( \/E (2 21n 5 ) aXx a)

N 4AR? 4
2a’%a— — [2+4/2In= |,
Vi d

and K, 1s the value of the optimum obtained in the mini-
maz solution of (25).

Proof. The bound comes from two applications of
Lemma 9 again with ¢ replaced by 6/2, one for the positive
training examples and one for the negatives. The overall
error is bounded by the maximum of the probability of
misclassifying a positive or negative example. =

It would be interesting to see if this bound could mo-
tivate an improved version of the minimax algorithm by
effectively taking into account the different accuracy of
approximation between positive and negative examples.

5 Conclusions

We have proven a general result bounding the norm of
the difference between the true mean of a distribution and
its estimation from a finite sample. The result does not
involve the dimension of the feature space, but rather in
line with methods for analysing kernel methods involves
the radius of the ball in the feature space containing the
support of the distribution.

We combine this result with a link between higher order
moments and polynomial kernels to obtain corresponding
bounds on the errors of estimating higher order moments.
The important feature of these results is that they are not
killed by the high dimensionality typical of higher order
moments.

As an application we derive a new novelty detection
algorithm and consider its implications when applied in
the quadratic kernel feature space.

A further application involves the derivation of rigorous
bounds on the generalisation error of a recently proposed
classification algorithm known as the Robust Minimax al-
gorithm.

We believe that the paper opens up an exciting new av-
enue of investigation of kernel method algorithms involv-
ing the use of different moments of the input distribution
all estimated empirically. Many of these bounds may give
rise to novel algorithms through optimising the derived
expression for the generalisation. For example our bound
on the error of the Robust Minimax algorithm involves
data-dependent features that vary between the positive
and negative examples. It is likely that the algorithm can
be adapted to balance the errors made on positive and
negative examples to take account of these estimation er-
rors, hence giving a tighter upper bound on the error of
the resulting hypothesis. The derivation of these results
and algorithms is beyond the scope of this paper.

References

[1] Gert R.G. Lanckriet, Laurent El Ghaoui, Chiranjib
Bhattacharyya, and Michael 1. Jordan. A robust min-
imax approach to classification. Journal of Machine
Learning Research, 3:555-582, 2002.

[2] C. McDiarmid. On the method of bounded differ-
ences. In Surveys in Combinatorics 1989, pages 148—
188. Cambridge University Press, 1989.



