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Abstract — Inthistak we review some recent algebraic constructions of rotated cubic lattice constellations for the Rayleigh fading channels.

1 Introduction!

Multidimensional cubic lattice signal constellations with speci-
fied modulation diversity have been recently proposed for trans-
mission over the fading channel. Given a cubic lattice constel-
lation the desired modulation diversity is obtained by applying
a suitable rotation. Boutros et al. [2, 3] have shown that lattices
constructed by the canonical embedding of an algebraic num-
ber field K of signature (r1,r2) have diversity L = r; + rs.
Hence, totally real algebraic number fields result in the max-
imum diversity L = n, equal to the dimension of the lattice
constellation (or the degree of K). This motivates the investi-
gation on cubic lattices over totally real number fields.

In this paper, we give an overview of the new constructions
of rotated cubic lattices using ideal lattices [1]. In particular,
we analyze two families of totally real number fields: (i) the
maximal real subfield of a cyclotomic field (ii) cyclic fields of
odd prime degree. Then we provide a technique to combine
these constructions to build rotated cubic lattices in higher di-
mensions.

2 ldeal lattices

Definition 1 Let K be a totally real number field of degree n.
An ideal lattice is an integral lattice (Z, ¢,), where Z is an O -
ideal (which may be fractional) and
Ga :IXT—=2Z, qalz,y)=Tr(azy), Yo,y €L

where Tr = Tr g q is the trace and o € K is totally positive
(i.e. o;(c) > 0 Vi).

If {w1,...,wy} is aZ-basis of Z, the generator matrix M of
the lattice {x = zM|z € Z"} is given by

Vaioi(wr) /oo (wr) Vanon(wr)
M = : : ;
Varoi(ws)  /azoz(wn) Vn0n(wn)

where a; = o;(a), Vj. One easily verifies that the Gram ma-
trix of this lattice is

G = MM’ = {Tr (a Wiwj)}Zjﬂ
When G is the n x n identity matrix we have an n-dimensional
cubic lattice.
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Theorem 1 Let 7 be a principal ideal of Ox. The minimum
product distance of an ideal lattice A = (Z, q,,) of determinant
D defined over Z is

D
dp,’!nl’n,(A) = d_K'
In order to compare among different lattices, we normalize
the determinant D to be 1, so that

dp,min = ]-/ V dK

It is also useful to consider d;/”

,min

lattices of different dimensions.

in order to compare among

3 Cyclotomic construction for
n=(p—1)/2

Letp > 5beaprime,n = (p—1)/2and ¢ = ¢, = e 2"/? be
a pth root of unity. The rotated cubic n-dimensional lattices are
built via the ring of integers of K = Q(¢ + ¢~ 1), the maximal
real subfield of Q((), whose integral basis is given by {e; =

Proposition 1 Leta = (1 —¢)(1 — ¢~ 1) then

1
— Tr (axy
5 Tr(azy)

is isomorphic to the unit form < 1,...,1 > of degree n.

Using the above proposition, we construct rotated cubic lat-
tices forn =2,3,5,6,8,9,11, 14,15, 18, 20, 21, 23, 26, 29,
30,.... The lattice generated by the ring of integers has the
n xn generator matrix M with elements M}, ; = 2 cos (%) .
The twisting element can be represented by the diagonal matrix

A = diag ( ak(a))

The basis transformation matrix is given by

1 1 - 1 1
0 1 1 1
T =
0 -~ 0 1 1
00 -~ 0 1



Finally the rotated cubic lattice generator matrix is given by
1
R =—TMA
VP

By Theorem 1, the minimum product distance is given by

dp,min = 1/Vdk = p~ "7, since di = p*F = p"! (see
Table below).

n dp,min \n/ dp,min
2| 1/v/5  0.66874030
3| 1/7 052275795
5| 1/112  0.38321537
6 | 1/V/135  0.34344479
8| 1/V/177  0.28952001
9| 1/19* 027018738
11| 1/23°%  0.24045444
14 | 1/v/2913  0.20942547
15| 1/317  0.20138689
18 | 1/v/3717  0.18174408
20 | 1/+/411% 0.17136718
21| 1/43'0  0.16678534
23| 1/47'  0.15859921
26 | 1/v/53%  0.14825905
29 | 1/59'  0.13967089
30 | 1/v/612° 0.13711677

4 Cyclic construction in prime dimen-
sions

Let K be a cyclic extension of Q of prime degree n > 2. Based
on the work of Erez [4] we consider lattices constructed using
the ideal A of Ok such that its square is the codifferent, i.e.,
2 —1
A* =Dy Q-

Since a Galois extension of odd degree is totally real, we con-
struct rotated cubic lattices with full diversity L = n. The
construction is based on the existence of a trace form over A,
which is isomorphic to the unit form up to a scaling factor. Let
p be an odd prime. Depending on the ramification of p in Ok,
we derive three different classes of lattices:

1. Case I: p > n is the only prime which ramifies.
2. Case Il: p = n is the only prime which ramifies.
3. Case IlI: there are at least two primes p; and p, that ram-

ify.

41 Casel

Proposition 2 Let p such that p = 1 (mod ). Let r be a prim-
itive element (mod p), a = []1%5" (1 = ¢""), m = 25* and let
A be such that A(r — 1) = 1(mod p). Define z = (*a(1 — ()

and

p=1
j=1

Then we have Try g (20t () = 0o, p*, t =0,...,n — 1 (see

diagram below).

<0o>

42 Casell

If only the odd prime p = n ramifies in K, we can embed K
in Q((n2), where p = (2 is a primitive n2th root of unity (see
diagram below).

Q(Cﬂ2)

n—1

Q

Proposition 3 Let T = Trg,)/x (1) = E;‘:—f o™ (). Then

Trr/Q((1+T)o' (14 T)) = doun®, t=0,...,n—1.

4.3 Caselll: at least two primesramify

Suppose now that K contains at least two primes that ramify.
We will use two fields where only one prime ramifies as bulding
blocks to construct K.

Lemma 1 Letn be anodd prime. Take two distinct odd primes
p1, P2 Such that p; = 1 (mod n), but p; # 1 (mod n?), i =
1,2. Let K be a cyclic field of degree n such that p; and p-
ramify. Then K is contained in the compositum K4 K> of two
fields such that K; is the cyclic field of degree n where only p;
ramifies, ¢ = 1, 2.



The corresponding extension tower is shown below.

Q(¢pip-)
Q¢ )/ \Q(sz)
KiK>
K n? Ky
n . n

Proposition 4 Let K, K5 be two disjoint Galois extensions of
Q, whose discriminants are relatively prime.
Let G; =Gal(K;/Q) fori = 1,2 and G; =<0 >, G2 =<
T > be cyclic of order n. Let K C K; K> be another cyclic
extension of order n. If there exist z; € K;, i = 1,2 which
satisfy

1. TrKl/Q(.’IIlO't(.Tl)) = 50,tp%a t=20,.. N = 1

2. TrKQ/Q((.Tth(.’L'Q)) = 60,tpga t = 0, RPN (e 1
then there exists = € K, given by 2 =Trg, k, /k (z122), such
that

TrK/Q(awt(x)) = 50,tpfp§, t=0,....,n—1
where <y>= Gal(K/Q).

The detail of the extension tower for Case I11 is shown below.

K1 Ko
<T> m <o>
n <o T>|n n
Kq K Ky
" <y>|n "
<o> <7r>

5 Mixed constructions

Proposition 5 Let K be the compositum of NV Galois exten-
sions K; of degree n;, (i.e., the smallest field containing all
K;) with coprime discriminant i.e., (dk,,dk;) = 1,Yi # j.
Assume there exists an «; such that the trace form over K,
Tr (a;xy), is isomorphic to the unit form < 1,...,1 > of de-
green; for j = 1,..., N. Then the form over K

Tr(azy) @ - @ Tr (anzy)
is isomorphic to the unit form < 1,...,1 > of degree n =

N
Hj:l TLj.

The lattice generator matrix can be immediatly obtained as
the tensor product of the generator matrices M) correspond-
ing to the forms Tr (ojxy) forj =1,... N

M=M"Y ... M.

Using as components two cyclotomic constructions we are now
able to construct rotated cubic lattices in other dimensions such
asn = 10,12,16,22,24,27,28,.... The case n = 4 can be
obtained combining the two distinct rotated square lattices and
the case n = 25 can be obtained combining the two rotated
cubic lattices of dimension 5 constructed using Case | and Case
Il cyclic constructions.

Proposition 6 Let K = K; K5 be the compositum of two Ga-
lois extensions of degree ny and no, with coprime discriminant.
The discriminant of K is dix = diidy2, where m; = [K :
Kjl=n/n;,j=1,2.

As a direct consequence, we have that for the mixed con-

struction 1
dp,min = g .
V K1 7Ks

n | Cyclotomic Cyclic Mixed

2 | 0.66874030 - -

3 | 0.52275795 | 0.52275795 -

4 - - 0.02500000
5 | 0.38321537 | 0.38321537 -

6 | 0.34344479 - 0.34958931
7 - 0.23618809 -

8 | 0.28952001 - -

9 | 0.27018738 - -
10 - - 0.25627156
11 | 0.24045444 | 0.24045444 -
12 - - 0.22967537
13 - 0.16002224 -
14 | 0.20942547 - -
15 | 0.20138689 - 0.20032888
16 - - 0.19361370
17 - 0.11292301 -
18 | 0.18174408 - 0.18068519
19 - 0.08308268 -
20 | 0.17136718 - -
21 | 0.16678534 - -
22 - - 0.16080157
23 | 0.15859921 | 0.15859921 -
24 - - 0.15134889
25 - 0.10574672
26 | 0.14825905 - -
27 - - 0.14124260
28 - - 0.14005125
29 | 0.13967089 | 0.13967089 -
30 | 0.13711677 - 0.13161332

6 Conclusionsand futureresearch

We have presented some new algebraic constructions of full-
diversity rotated cubic lattices using the theory of ideal lattices:
one based on cyclotomic fields, the other based on cyclic fields.
We also provided a way of combining the constructions in or-
der to obtain some missing dimensions. The performance in
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FIG. 1: BER for L = n, 2 bits/symbol

Cyclic Construction - QPSK (eta = 2 bit/symb)
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FIG. 2: BER for L = n, 2 bits/symbol

terms of minimum product distance is clearly given by means
of explicit formulas related to the field discriminant. The cyclo-
tomic constructions give better results in terms of d;, i, When
compared to the cyclic ones in the same dimension. The cyclo-
tomic, cyclic and mixed constructions enable to build a rotated
cubic lattice for all dimensions from 2 to 30.

Figures 1 and 2 show the bit error rate performance of the
signal constellations with a spectral efficiency od 2bit/symbol
obtained by simulation. Decoding is performed using the ML
sphere decoder [5]. Future work will involve the search for
maximal minimum product distance rotated cubic lattices in
every dimension.
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