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Abstract – We present a multiscale analysis of piecewise constant signals subject to noise. The objective is to find the locations

of the change points. To this end, we first apply a continuous wavelet analysis and construct lines of local wavelet maxima, in

a way similar to the well-known construction by Mallat and Hwang. The second stage of our approach is an extension towards

unbalanced wavelet analyses in order to improve the statistical power of our detection.

1 Introduction, problem description

Wavelet thresholding [1] provides an interesting tool in
smoothing piecewise smooth signals subject to noise. The
idea is that singularities in the underlying (i.e., noise-free)
signal give rise to wavelet coefficients whose magnitudes
are significantly higher than the magnitudes of coefficients
that are not related to any of the singularities. The tech-
nique can be proven to be statistically optimal in sev-
eral aspects. Moreover, on the practical side, it can be
extended and refined using nondecimated wavelet trans-
forms, resolution level dependent thresholds, tree struc-
tured coefficient selection, block thresholding, hard- or
soft-thresholding or any intermediate operation, such as
thresholds in a Bayesian framework [2].

In spite of this success, wavelet smoothing is sometimes
criticised for its outputs which often contain spurious fea-
tures, typically spikes, due to falsely selected wavelet co-
efficients. Every coefficient selection method inevitably
shows at least a few of these false discoveries. Moreover,
the true significant coefficients also carry some propor-
tion of noise. Although these spurious features in gen-
eral have little impact on the signal-to-noise ratio of the
output, they often affect its visual quality. The output
becomes smoother if the adopted selection is more conser-
vative (i.e., if less coefficients pass the selection), such as
in the universal threshold procedure, but the price to pay
is inaccuracy, Gibbs phenomena near the jumps.

Wavelet thresholding uses the wavelet coefficients both
for locating the positions of the singularities and for smooth-
ing the intervals between those singularities. Both tasks
are performed simultaneously: the coefficients locate the
singularities in an implicit, passive way. The idea of this
paper is to actively estimate the precise locations of sin-
gularities first, thereby separating the detection of singu-
larities from the actual smoothing.

In this paper we consider piecewise constant functions
only. Smoothing given estimates for the jump locations is
then of course straightforward by taking the averages of

the observations between the jumps.
The problem of locating the jumps is known in sta-

tistical literature as change point detection. In the pre-
sented algorithm, the number of change point is not a pri-
ori bounded. The algorithm is refines a technique based
on the analysis of local maxima in a continuous wavelet
transform [3, 4], further explained below. It also extends
this local maxima analysis with towards an unbalanced
transform, which is a sort of so-called second generation
wavelet. As explained below, this unbalanced transform
allows to find for each change point, the specific scales
(i.e., ranges) of the two intervals of smooth (in this paper:
constant) behaviour on the left- and right hand side of the
change point. All together, unlike the wavelet threshold
approach, the proposed algorithm does not operate on the
wavelet coefficients directly. It rather uses the coefficients
as a tool for a fast search for the precise location and left-
and right hand scales of each change point. A full search
on these three parameters would require O(N 3) computa-
tions for N samples. The presented algorithm finds them
with a computational complexity of O(N log N).

2 The algorithm

Suppose we are given N noisy samples yi, i = 1, . . . , N

of a piecewise constant signal µi, i = 1, . . . , N . Consecu-
tive observations have the same intensity, except at some
transition points:

µk = µτr
, for k = τr, . . . , τr+1 − 1,

where 0 < τ0 < . . . < τr < τr+1 < . . . < τR ≤ n − 1
is a sequence of R change points, and 0 ≤ R ≤ n − 1 is
unknown. The change points are specified by the (integer)
index τr of the first observation from the segment with a
certain intensity. The proposed algorithm to estimate the
τr’s proceeds as follows:

1. Compute a (discretised) continuous wavelet trans-
form w of y, Let J be the number of discretised
scales, then w is a J × N matrix.



2. For each scale j = 1, . . . J , find the local maxima. If
this maximum is sufficiently large (say, if its abso-
lute value is larger than 3), the corresponding loca-
tion is considered as a candidate change point. In
the presence of noise, the fine scales of the wavelet
transform have a lot of local maxima. In order to
save computations, it is interesting to smooth the
wavelet transform within the scale and compute the
local maxima of that smoothed version first. The ob-
tained values serve as provisional estimates of the lo-
cal maxima. In a second step, we compute the global
maxima of the original, non-smoothed transform, on
the intervals between every pair of provisional max-
ima and we replace the provisional values by their
corresponding new values. Let Mj denote the set of
indices corresponding to these selected maxima at
scale j, i.e.,

Mj = {k = 0, . . . , n − 1
∣

∣|wj,k | ≥ |wj,k±1|}.

3. Link local maxima at successive scales. Two max-
ima at successive scales are linked if both are the
closest maximum to the other one. More precisely,
a maximum at scale j, location kj is connected to a
maximum at scale j + 1, location kj+1 if and only if

kj = arg min
l∈Mj

|l − kj+1|, and

kj+1 = arg min
l∈Mj+1

|l − kj |.

4. Merge lines with overlapping locations into a single
line: some different lines show up at the same loca-
tion, but different scales, for instance if there is a
gap between scales of local maxima. The algorithm
starts from the longest existing lines. If such a line
does not continue all the scales down, we check if
a bridge can be constructed from its end point to
another line at a neighboring location. If there is
more than one candidate, take the shortest bridge,
where the length of the bridge is defined based on
the shift in location and scale to jump into the new
maxima line. If two candidate lines can be reached
by bridges of equal lengths, we select the line whose
average location over all scales is closest to the aver-
age of the original line that we want to extend. As
soon as a candidate line of maxima is selected, the
original line is completed by filling in the locations
of the secondary line at scales where the original line
had no maxima. The secondary line is then removed
from the set of maxima lines.

5. For each line of maxima, select the scale j on which
the coefficient has the largest magnitude.

6. Make the basis functions unbalanced. Introduce two
scale variables, jl and jr, left and right from the lo-
cation k of the line of maxima at the scale j selected
in the previous step. The extension to unbalanced
wavelets is trivial in the Haar case, leading to the un-
balanced Haar wavelet transform. Chose the values
of jl and jr such that the resulting wavelet coeffi-
cient is maximised.

7. Starting with the largest coefficients, select the loca-
tions of significant change points. Once a location is
selected, recompute the remaining coefficients such
that the corresponding basis function lie entirely on
one side of the previously selected change points.

An example of the output of the algorithm is given in
figure 1. The noise in this example is generated by a
Poisson process.
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Fig. 1: A simulated example of Poisson data with time
varying intensities. On the left the plot of the intensity
curve. This is a scaled and vertically translated version of
the well-known ‘Blocks’ test example [1]. In the middle a
random realization. On the right the estimation from that
realization, using the procedure proposed in this paper.
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