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Résumé — Nous étudions une approximation quadratique du Critére de Vraisemblance Généralisé (GLRT) pour pouvoir décoder efficacemer
une certaine classe de codes espace-temps unitaires pour le canal MIMO a évanouissement par bloc. L'approximation quadratique est dérive
partir de la série de Taylor de la métrique du GLRT tronqué au deuxiéme ordre. Une expression analytique du récepteur GLRT approximé e
ainsi derivée. Ses performances et les pertes par rapport au cas sans approximation sont illustrées a travers des simulations.

Abstract — We provide a quadratic approximation of the Generalized Likelihood Ratio Test (GLRT) in order to decode efficiently a certain
class of unitary space-time codes for the noncoherent MIMO block fading channel. This quadratic approximation is derived from the Taylor
series expansion of the GLRT truncated at the second order. A closed form expression of the approximate GLRT receiver in the MIMO case |
derived and its performance loss is assessed through some preliminary simulation results.

1 Introduction antennas adopting the coding scheme proposed in [6]. We will
provide also some performance curve in the cise= 2 in

Recently, many contributions on constellation design for narroftder to estimate the performance loss of the approximated de-
band noncoherent Multiple Input Multiple Output (MIMO) blockeoding rule with respect to the standard one.
fading channels have been proposed in order to exploit their

promising diversity and capacity gains. It has been shown th
the problem of designing good constellations can be restated?s SyStem M odel

finding optimal packings of\/-dimensional subspaces 6f" Encoder. Let B be a generi¢T — M) x M complex matrix.

(T. > M), i.e. packipgs over the Grassmannidg, »;, where The exponential map has the following closed form expression
T is the coherence time of the channel adt the number of 3]

transmit antennas [9].
Here we will focus on the prop_osal in [6]: starting from a X X1 = oA exp(A) = exp QO _BTD 7 )
constellationB carved from a lattice, and by applying to it B 0

the so-called eXpOQg”“a' map, a constellaibre G, is whereX, X+ are respectivelf’ x M andT x (T— M) complex

obtained:B € B — X € C. The element8 € B are  matrices with unitary orthonormal columns, the one being the
(T — M) x M complex matrices; the elemeXse C areT' X grthogonal complement of the othéX" X+ = 0,/ 7_ /. Let

M complex matrices with unitary orthonormal columns whichp — v@U' be the thin singular value decomposition (SVD)
represent the basis of the corresponding subspaces. While tisB whereU is 7 x M and unitary,V is (T — M) x M

is an efficient method to generate dense constellations over thyg has orthonormal column® is diagonal and collects the

Grassmannian, in gener@ldoes not have any apparent struc- ys singular values. The Cosine-Sine (CS) form of (1) is [3]
ture to be exploited for efficient decoding. HowevBrhas a

lattice structure by construction: its algebraic properties can x _ [UCUJ} Coxt= [ usvi )
be of use, if we manage to restate the decoding problef in VSU' VeV vV

Due to the non-linearity of the exponential map, the decoding\lhereC — cos(®), S = sin(®) and V' is any orthogonal

gegtlr(,: hgs n gtehner?l agf)mpllclzate(lj expdrest§|0n as a.funclinon ?Emplement ofV. In order to inverse the exponential map,
th. d €l de'a IS Ierltho Ok ‘Tn a_l_oc? quadratic appfr;)hxwga '03.0 he following condition on the singular values of the matrices
e decoding rule, thanks to a Taylor expansion of the decoding _ '\ \«t'he satisfied [3]

metric as a function oB truncated at the second order.
In this contribution, we generalize to the MIMO case the pre- max 0, (B;) <

vious idea, already carried out in the SISO case (one transmit m=1,....,M

and one receive antenna) in [2]. We derive a local quadratic apvhered,,, (B;) is them-th singular value oB,. The procedure

proximation of the Generalized Likelihood Ratio Test (GLRT)to obtain the matridB = exp~!(X) is described in [3]. Given

for systems with equal numbér > 1 of transmit and receive a generic cod#, if conditions (3) are not satisfied, a new code

g, VB, € B ©)
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is constructed with scaled codeworaB;, for all i. The com-  function ofb = v@) € B due to the exponential map:
mon positive scalag is calledhomothetic factor and modifies P T PSSP
only the singular values afB;, which becomex®,. The ho- q(b) = %(b)'P"Px(b) = x(b)'Qx%(b). (5)

mothetic f_acftor value is chosen to satisfy the inequa"ties_(3hnfortunately,ée has not in general any apparent structure to
and to optimize the performance of the code, at the same imgg, officiently decoded. On the contrary, the corresponding code

In the following we suppose thds belongs to a constel- 5 haq 5 |attice structure by construction. Hence we can use
lation 15 carved from a latticel. The matricesX belong 0 gficient algorithms to solve closest-point problems (i.e. mini-
the corresponding Grassmann cadegenerated fron5 via iz ation of a quadratic function) [1]. Following [2], we derive
the exponential map. In fact, treent codewords ar& < C. a quadratic approximation of the GLRT metqi@f)) as a func-

sH:r\ilz)ee\:jeglstzeb;i?: fé;fsgmﬂznmcst?iie?&be eiu.'}/iftutly dt(?c')n of b, by using its Taylor series truncated at the second
= € . . ~
order and evaluated in a generic pdint

J = [07—n v Ir—pf]t, or by the seC. of the matrices:®.

In this work, (-)! stands for simple transposition, whilg' de- q(b) =~ q(bo) + Dy [q](bo)(b — by) (6)
notes transposition and conjugation. 1o o ey R
Channel model. The codewor e C is transmitted through +5(b=bo)" D, [g](bo) (b — bo) (7

an narrow-band block-fading Rayleigh MIMO channel corrupted . .

by an additive white Gaussian noise (AWGHN)is the length  whereDy [¢](bo) andD%2 [q](bo) are respectively the first and
in symbol periods of the coherence length of the channel. Theecond differential of the function(b) calculated inbg. Ap-
transmitter is equipped with/ antennas and the receiver with proximation in (6) and (7) is reasonably precise only in a neigh-
N antennas: in the following we focus on the caée= M.  porhood of the poinby, in this sense it is just cal approxi-

The received complex signal can be written as mation of the GLRT metric.
Y - X H + W The pointby is obtained from the received signgt put’Y
TxM TxMMxM TxM’ in CS form (2) and call itX, (see [3] for a procedure to do

where each entry of the chanrigl ., is a i.i.d. circularly sym-  that). Thenb, = vec(Bo), with By = exp™*(X,). It holds
metric Gaussian random variattl&/ (0, 1), whose value is un-  true that
known to the transmitter and to the receiver. The entries of the (T o -
noise matrix are i.i.d. random variables ,,, ~ CN(0,02). Qx(bo) = Q% =0, q(bo) =0 ®
Decoder metric. The receiver use a Generalized Likelihood since evaluating these expressions comes to calculatiog =
Ratio Test (GLRT) in order to detect the sent matrix symboloM,TfM by construction of)o.
The GLRT can be expressed in many different but equivalent The first differential in (6) is
ways, we use the following one ) dg - ) )
min ||YTxL”% — min H(Jt ® YT) VQC(eA)||2 7 (4) DB[QKbO) = d)A((bO) Dﬁ[ﬁ](bo) = 2)26 QDB[)A(](bO) =0.
Xtect eheC, (9)
where| - || is the matrix Frobenius norm, angc(-) is the vyhere the re;ults are ot_Jtained from the differential _of symmet-
operator which concatenates in a unique column vector thgC matrices in [7] and '””0_0“10'”9 (8). Let us defibk, —
columns of the input matrix. The last expression in (4) is ob[X](Po) the first differential ofx as a function ofb eval-
tained by applying the indentityec(M;MyMs;) = (M} ® uated inbo. The second differential of as a function ofb
M, )vec(M,), whereM; are generic complex matrices and ~ calculated irby is [3]
is the Kronecker matrix product. The matrices in (4) can be ex-

P PR - - . d?x -
pressed also in real fornvec(YTX L) = (J* @ Y1) vec(eA),  Di.lal(bo) =2Dj QDo +2(Lir2 @ (%,Q)) <dl§2(bo)>

where(f) is the operator which gives the real fohaf any com- ~
plex matrix or vector. =0 (10)

where the simplification comes again from (8). Hence, only
Dy is needed, and it is derived by applying formulas in [7]
and [8] to our case. By letting = vec(A) andag, Ao the
corresponding quantities evaluated, it can be shown that
ethe differential takes the following form

3 Approximation of the GLRT metric

Let us definek = vec(e®) € ., whereC, is exactly equivalent

to C. but with matrices expressed in real form. Let us defin

alsoP = Jt @ YI = J' ® Y!. Itis clear that the GLRT (eK(Aé) Y .
O = —_——

t
. . . . X A
metricq = ||P x||? is a quadratic function ot but a non-linear K(AD) ) (Ior @ e™0) Z. (11)
0

1We use the following definition, for any matri& or vectora: ~ 4 A~ 4 ~
WhereK(Ao) = AO D (7A0) = (AO & IQT) — (12'1" X AQ)
A Re(A) —Im(A)| . Re(a) 2 T ; .
A=110(A) Re(a) | 2= |tm(a) - The(47%) x 2M (T — M) real matrixZ is defined as follows:
letk=1,...,T—Mandl =1,...,M,itsfirstM(T — M)
Re(-) andIm(-) are respectively the real and imaginary part. The expressiorcolumns are
eA = e/ istrue, just apply the standard properties of the operator to the series
expansion 0. We express the GLRT metric as a function of real vectors and Z (T—M)(6—1) = €M+k+2T(0—1) — €04+2T(M+k—1)

matrices because results on differentials of real matrices are more widespread
in the literature. T e 4 M+k+42T(T+4—1) — CT+L42T(T+M+k—1)
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and the othed/ (T — M) columns are With respect to a coherent system, the structure of the ma-
trix Q is quite different. Let us suppose that there is no ad-

Zk+(T-M)(M+£—1) = €T+ M4k+2T(—1) — CL42T(T+M+k—1) ditive noise in the channel. In a coherent system, the chan-

+ eri i or(M+k—1) — €M+k+2T(T+4—1) nel estimation would be perfect in this case aQddepends

exclusively onHH?. On the other hand, in our noncoher-

ent system, even iii — H when no noise is present, the

eigenvalues ofQ are influenced also by the geometry of the

code and by the approximation. This is apparent in (15) and

in (16), where the coefficients; andc; have possibly van-

4 The Simplified Receiver ishipg !ower bound. 'ghe lower bound,,;,, o overay is non-
vanishing becausé/m> < A,.n2 < 1 for all codes and all

homothetic factors. Still the coefficients attenuate the value

of the eigenvalues of) with respect to the ones diH!. In

min ||P Do (b — bo)||> = min(b — by)'Q(b — bg), (12)  general, the higher the homothetic factor, the smaller the lower

beb beb bound)\,,.;,, 2. The coefficients;, have 0 has lower bound and

with Dy in (11). The received signal can be always written inP0ssibly contribute to a further reduction of the eigenvalues of

the formY = Xy H,, whereXj is in CS formH, is a sort of Q.

channel estimate (|f no additive noise is present’ H%n: H The preViOUS remal’kS, and the fact that the StatIStl(B(Df

is the true channel realization aﬂd) is the sent Codeword)_ are different from the ones of the received Sigﬁaﬂue to the

It can be shown that (the derivation is omitted due to lack ofXxponential map non-linearity, let us conclude that the Packet
space) Error Rate (PER) performace of the approximate GLRT will

, . not follow the same law of the one of the GLRT without ap-
PD,=(J'@H, Iy, )P,Z=P,P,Z  (13) proximation.

wheree; is the zero column vector of leng1"? with a one at
thei-th entry. It can be shown that expressioryf in (11) is
always well-defined and it can be calculated efficiently.

The expression of the approximate GLRT decoder is

WhereItT7M = [Ip Op—p,m]. The matrixP; contains ex-
plicitly the channel estimaté, is a constant matrix anB is
a full rank real square matrix which describes the influence oHere we present some simulation results in the dase 4,
differential of the matrix exponential. In the next subsectionjs = 2. We use two coherent codBs andBs, built as follows
we will study in more detail the square symmetric matrix of 1

the quadratic fornQ = Z'P,P! P, P,Z. Bi>B=— { sut@sy (s + QSS‘%

4.2 Simulations

V2 |U(s3 — ¢s4) 51— Ps2
. ~ H 2 __ _ im/4
4.1 Thestructure of the matrix Q with 2 = ¢ = e'7/* and
It is possible to show that the eigenvaluegP5P,) of PLP, By>B= 1 [;g ((‘21 t;‘?)) %”'83 i;z“ﬂ
are closely related to the singular valdgs, = 6,,,(B), m = Vb [19r(s3 47 FriEl 2
1, ..., M of By (here we deal with the cage= 2M): wherer = (1 + V5)/2, 7= (1—=+5)/2, ¢, =1+i(1—1)
1— 0, 0+0, andg¢, = 1+i(1 —7) (see [3] for more details on these codes).

Ak (PLPy) =2 C(Q)?[aa( i’oe ) 0)] ,myn=1,..., M  The symbolss;, s4, s3, s4 are selected from a 4-QAM or a 8-

"m0 == Un.0 (14) QAM alphabeth with unitary energy. Starting frafa, B, we

obtain the Grassmann codés, Cs (s € 4-QAM) or C3, C4
(sx € 8-QAM). These Grassmann codes and their perfomance
depend also on the choice of the homothetic faator

In Fig. 1 we present the performace (in PER versus the aver-
age SNR per received antenna and per syXdbr the codes
C; andC, obtained with different homothetic factors. The high-

where we have also shown the homothetic faetoSince the
function2(1—cos(z))/x? for x € [0, 7] is decreasing from 1 to
4/7%, we have that )4 > = max{\;(P4P5)} = 1 (obtained
When0m70 = 97170) and)\me = mm{)\k(PéPg)} = 2(1 —
cos(0maz))/(@0maz)? (Obtained ford,,.. = rg@azc{ﬁm’o +

On0})- _ _ esta for each code represent the optimal homothetic factor for
By applying the Ostrowski's theorem [4, pag. 224], boundsthat code in the sense that it minimizes the PER performance
on the eigenvalues @) can be found. In particular of the GLRT receiver. In fact, the optimal guarantees a high

minimum distance of the noncoherent code. However, in this
case the approximate GLRT decoder is not at all close to the
where the only non-zero eigenvalues®fP; are in fact the optimal GLRT perf_ormance. This is dug to the statistics of

eigenvalues OI/{:I/i\et (see definition ofP, in (13)). Finally the proposed receiver (12)_, which are @fferent from the one
by completing with zeros the matri&to a square matrig :’ of the GLRT. Hence, even if the approximation works and no

[Z 0], and by noticing tha!Z — 41 we havelthat performance floor is present, the diversity of the system is not

’ - 2(T—A{)]\/]5
max{Aw(Z1Z1)} = 4 andmin{\;(Z{Z,)} = 0. By applying 'ccoveredyet

. . L ! When the homothetic factor decreases, the distance between
again the Ostrowski's theorem, and combining with (15), the
. . ~ codewords decreases as well, and the GLRT performance de-
following bound holds for the non-zero eigenvalue€pf

grades. The approximate GLRT at low SNR it experience a
Aming < ap <1 noise-limited channel. In this case, it manages to follow the
0<c¢, <4 : (16) GLRT performace curve. However, at high SNR, when the

Ak(ngthlPQ) = ak)\k(Pthl), )\min,Q S A S ]. (15)

A (Q) = akzck)\(ﬁ\eﬁ\et)
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FIG. 1: GLRT (solid lines) and approximate GLRT (dashed
lines) performance for codes andC, obtained with different
homothetic factors.. Spectral efficiency 2 bit/s/Hz.
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FIG. 2: GLRT (solid lines) and approximate GLRT (dashed
lines) performance for cod€s andC, obtained with different
homothetic factors.. Spectral efficiency 3 bit/s/Hz.

noise does no longer dominate, the PER curve of the approxi
mate GLRT is dictated by the asympotic statistics. Then, a loss

of diversity is observed.
In Fig. 2 we present the performace for codigsand C,
with different homothetic factors. Here too, the highesis

the optimal values to minimize the GLRT performance. The
behaviour of the approximate GLRT is substantially equivalent [6]

to the case of cod&€s andC,, even if here we deal with denser
constellations.

In this paper we do not directly compare our proposition

over, inthe cas&’ = 4, M = N = 2, spectral efficiency equal

to 2 bit/s/Hz, the performance proposed in [5, Fig. 2] is com-
parable to the one obtained in this work (see Fig. 1). However,
the simplified receiver proposed in [5] seems to better approx-
imate the true GLRT receiver, even if the optimization of the
code is more cumbersome than in our proposal. The reason
of the difference in the behaviour of the approximate metric in
the two cases is probably to be searched in the fact that in [5]
the received signal is preserved, while in our proposal part of
it is lost when terms of higher order of the Taylor series are
neglected.

5 Conclusion

In this paper we have presented a derivation and first analy-
sis of an approximate GLRT receiver. This receiver applies to
unitary constellations suited for transmission on noncoherent
MIMO channels, when generated by the exponential map. The
approximate GLRT is obtained by truncating the Taylor series
expansion of the GLRT metric. This approximation enables ef-
ficient decoding of the sent signal, but entails also a loss in the
diversity. Results are provided in some cases and a first qual-
itative comparison with another proposition in the literature is
carried out.
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