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Résumé – Dans cet article, nous présentons la version « multi-split » de l’algorithme LMS largement linéaire. Également au filtrage 
linéaire conventionnel, la transformé « multi-split » augmente le facteur de diagonalisation de la matrice composée d'autocorrélation et 
de pseudoautocorrelation du signal d'entrée impropre, et un algorithme LMS avec un pas d’adaptation variable et normalisé à la 
puissance est utilisé pour adapter les coefficients des filtres. Des résultats de simulation évaluent la performance de l’algorithme 
« multi-split » LMS largement linéaire pour l'égalisation adaptative d’un canal. 
 
Abstract – In this paper, we present the multi-split version of the widely linear LMS algorithm. As in conventional linear filtering, the 
multi-split transform increases the diagonalization factor of the composed autocorrelation and pseudoautocorrelation matrix of the 
improper input signal, and a power normalized and time-varying step-size LMS algorithm is used for updating the filter parameters. 
Simulation results assess the performance of the multi-split widely linear LMS algorithm for adaptive channel equalization. 

 
1. Introduction1 

Widely linear (WL) processing has been extensively 
used in multiuser detection, blind and non-blind 
equalization [1, 2], beamforming [3] and MIMO systems 
[4]. In the presence of improper complex-valued 
sequences, it provides significant performance 
improvements when compared to conventional linear 
filtering. 

Typically, an improper process appears when a real-
valued signal (e. g., from an M-PAM alphabet) is 
transmitted through a complex baseband channel. Several 
communication systems can be modeled according to this 
scenario, for instance, transmission with OQAM (Offset 
Quadrature Amplitude Modulations), the GSM system 
(Global System for Mobile Communication) and systems 
transmitting with binary CPM (Continuous-Phase 
Modulation) and modulation index h = ½ [1]. 

In adaptive systems, due to its simplicity and 
robustness, the standard LMS algorithm is the most widely 
used algorithm for updating the WL filer parameters. 
However, the performance of the WL-LMS algorithm in 
terms of convergence rate and tracking capability depends 
inherently on the eigenvalue spread of the input signal 
correlation matrix [5]. 

Recently, a low computational burden multi-split (MS) 
preprocessing of the input signal has been proposed for 
improving the performance of the LMS algorithm [6, 7]. 
After preprocessing, the adaptive FIR filter is realized as a 
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set of zero-order filters connected in parallel, and with 
each single coefficient independently updated. Such a 
technique can be viewed as a transform domain filter, in 
which multi-split preprocessing is applied to the input data 
vector. 

In this paper, we incorporate the multi-split transform 
into the WL-LMS algorithm in order to improve its 
performance. The resulting MS-WL-LMS algorithm 
presents a faster convergence rate than the WL-LMS and 
normalized WL-LMS (WL-NLMS [8]) algorithms. It is 
worth to stress that the application of the multi-split 
transform in widely linear adaptive filtering has not been 
yet considered in the literature. 

The paper is organized as follows. Next section presents 
briefly the multi-split transform. The application of widely 
linear processing in channel equalization is discussed in 
Section 3. Section 4 is devoted to analyzing the 
incorporation of the MS transform into WL processing. 
Simulation results are shown in Section 5 and, finally, 
some final remarks are drawn in Section 6. 

2. Multi-Split Transform 
Figure 1 shows the classical scheme of transversal 

filtering. Consider initially that all the parameters are real-
valued. When the number of tap-weights of the FIR filter 
is N=2L, L≥1, the continued splitting process of the filter 
impulse response in symmetric and antisymmetric parts 
can be represented by the filtering scheme shown in Figure 
2 [6], where 
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JN/2 is the N/2-by-N/2 exchange matrix, which has unit 
elements along the cross diagonal and zeros elsewhere, 
M1=[1] and w⊥i, for i = 0, 1, …, N−1, are the single 
coefficients of the zero-order filters connected in parallel. 
It can be verified that MN is a matrix of +1’s and –1’s, in 
which the inner product of any two distinct columns is 
zero. In fact, MN is a nonsingular matrix and Mt

NMN=NIN, 
where IN is the N-by-N identity matrix. 

The above multi-split scheme can be viewed as a linear 
transformation of the input data, which is given by 
 

x⊥(n)=MNx(n),                               (2) 
 
where x(n)=[x(n) x(n-1) … x(n-N+1)]t denotes the tap-
input vector and x⊥(n)=[x⊥0(n) x⊥1(n) … x⊥N-1(n)]t, with a 
butterfly structure that is very suitable for VLSI 
implementation. As it has been pointed out in [6], the 
multi-split transform does not reduce the eigenvalue spread 
of the input signal correlation matrix, but it does improve 
its diagonalization factor. 

In the adaptive context, a power-normalized and time-
varying step-size LMS algorithm, which exploits the 
nature of the transformed input correlation matrix, has 
been proposed for updating the single coefficients 
independently. 

As far as a filter with complex parameters is concerned, 
it has been shown in [7] that the decomposition of the filter 
impulse response into conjugated symmetric and 
antisymmetric parts can be accomplished by means of the 
separated split decomposition of its real and imaginary 
parts. 

The multi-split LMS (MS-LMS) algorithm is described 
by: 

 
                                                                (3) 

and 

 
,               (4) 

 
 
 
for i=0, 1, …, N−1, where pi(n) and qi(n) are recursively 
calculated by: 
 

                                                                 (5) 
and 
 

                                      ,                       (6) 
 

e(n)=d(n)–y(n),                            (7) 
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µMS denotes the step size and ( )0 1γ γ<< ≤  is a 
forgetting factor. The case 1γ =  applies to wide-sense 
stationary environments. 

 
 

 
 

FIG. 1: Transversal filtering. 
 

 

FIG. 2: Multi-split filtering. 

 
 

 

 

 
 

 

FIG. 3: Widely linear trained equalizer. 

3. Widely Linear Equalizer 
Widely linear processing (WLP) is used to estimate a 

desired random signal d(n) based on the observation of a 
random signal x(n) that is complex and also improper. A 
signal is said to be improper if its pseudoautocorrelation, 
given by 

 
,             (9) 

 
is nonzero (C(m) ≠ 0). In other words, an improper process 
exhibits a nonvanishing pseudoautocorrelation. 

It has been shown that WL processing gives a better 
estimate, in the MMSE (minimum mean square error) 
sense, than strictly linear processing, when the observation 
signal is improper. This processing uses both x(n) and its 
conjugate x*(n) to estimate d(k), as shown in Figure 3 for 
adaptive channel equalization [1, 9]. The optimum filters 
Fo and Go are obtained in order to minimize E{|e(n)|2}, 
where k0 denotes a delay that should be chosen carefully 
and e(n)=a(n-k0)–â(n) is the estimation error. 

The scheme in Figure 3 can be viewed as shown in 
Figure 4, which corresponds to the polyphase 
representation of a fractionally spaced equalization (FSE) 
with sample rate 2/T, where T is the symbol interval. 
Furthermore, it is well known that, for zero-forcing (ZF) 
equalization of polyphase channels, the ZF FIR equalizer 
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needs to have the same subchannel order, since the 
subchannels have disjoint roots, e.g., it has no real roots 
and no conjugate pair of roots [10]. 

Since the transmitted sequence a(n) in Figure 3 is real-
valued, it is easy to demonstrate that Go=Fo*, which means 
that only one filter needs to be update with about the same 
computational complexity required for conventional linear 
equalization. In fact, since the WL equalizer can have the 
same channel order to satisfy the open-eye condition [1,6], 
the computational complexity can be greatly reduced. 

Throughout this paper, we assume that the channel is 
truly complex, e.g., Re{C}≠0 and Im{C}≠0, where Re{C} 
and Im{C} denote the real and imaginary parts of C, 
respectively. Such a condition usually holds for several 
applications [1]. The complex wide-sense stationary 
(WSS) additive Gaussian noise η(n) is assumed to be 
proper, with variance 2

ησ . 
Finally, the WL-LMS algorithm with fix step-size is 

described by [1, 8]: 
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4. Analysis of the Widely Linear 
Correlation Matrix 

In this section, we analyze the effect of applying the 
multi-split transform to the WL processing, concerning the 
diagonalization factor and the eigenvalue spread of the 
widely linear correlation matrix, composed of the 
autocorrelation and pseudoautocorrelation of the improper 
input signal. 

The WL correlation matrix R is given by [2, 3]:  
 

 
                  ,                           (11) 

 
where Γ=E{x(n)x(n)H} and C=E{x(n)x(n)t}. The 
applications of the multi-split transform to the input data 
yields: 

 
                                                                   (12) 
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and the transformed WL correlation matrix is given by 
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Considering that each WL filter has only two 

coefficients, we have: 
 

 
 
 
 
 
 
 
 

FIG. 4: Equivalent polyphase model of WL-equalizer. 
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Since 00 11r r=  and 01 01

*r r= , we can rewrite Γ⊥ as 
 

 
                                                                    (16) 

 
In the same way, C⊥ is given by 
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and, therefore, 
 
 
 
 
 
 

(18) 
 

So, it can be verified that the diagonalization factor of 
R⊥, defined by 
 
 

                                                                            (19) 
 
 
is increased when compared to the diagonalization factor 
of R. Moreover, we can verify that R⊥=2NK-1RK, where 
 
 

                                                (20) 
 
which means that the matrices R and K-1RK are similar 
and, consequentially, R⊥ and R have the same eigenvalue 
spread. 

Based on the above characteristics of the transformed 
WL correlation matrix, a power normalized and time-
varying step-size LMS algorithm (Table 1) is proposed for 
updating the WL filter parameters, as in conventional 
adaptive linear filtering [6]. 
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TAB. 1 : MS-WL-LMS Algorithm 

1) Linear transform: x⊥(n) = MNx 

2) Updating: 

y(n) = F⊥
H(n) x⊥(n) + G⊥

H(n) x*⊥(n) 

e(n) = d(n) – y(n) 

ri(n) = pi(n) / qi(n)   (eqs. (5) and (6)) 

f⊥i(n) = f⊥i (n –1) + µMS e(n) x*⊥i(n) / ri(n) 

G⊥ (n) = F⊥*(n) 

5. Simulation Results 
In order to illustrate the performance of the MS-WL-

LMS algorithm for channel equalization, we consider a 
complex discrete-time channel with impulse response h1(z) 
= (0,3921+0,3921j) + (0,0392+0,745j)z-1 + (0,051+ 
0,2548j)z-2 + (0,132+0,136j)z-3 +(0,1068+0,1129j)z-4 + 
(0,0423+0,0819j)z-5. Such a channel corresponds to a no-
minimum phase channel that possesses a severe distortion. 

The transmitted sequence was taken from a 4-PAM 
constellation. The signal-to-noise ratio, defined by 
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was set to 30 dB. The equalizer filters have N=8 taps. The 
simulation results were obtained from an average of 400 
independent trials. The performance of the MS-WL-LMS, 
WL-NLMS [6] and WL-LMS algorithms are compared. 

The learning curves are presented in Figure 5. It can be 
observed that the MS-WL-LMS algorithm presents the 
fastest convergence rate. The chosen delay was k0=2 
(Figure 3). We used a step size µMS=1/32 and a forgetting 
factor γ=0.9995 for the MS-WL-LMS algorithm. The step 
sizes for the WL-NLMS and WL-LMS algorithms were 
µNWL=0.25 and µWL=0.005, respectively. 
 
 

    
          Number of iterations (n) 

FIG. 5: Averaging learning curves for the algorithms. 
 

6. Conclusion 
In the present paper, we have applied the multi-split 

transform into widely linear processing. As in 
conventional linear filtering, it has been shown that the 
multi-split transform also increases the diagonalization 
factor of the composed autocorrelation and 
pseudoautocorrelation matrix of the improper input signal. 
So, a power normalized and time-varying step-size LMS 
algorithm has been proposed for updating the filter 
parameters, in order to improve the convergence rate. The 
better performance of the MS-WL-LMS algorithm in terms 
of convergence rate for adaptive channel equalization has 
been verified by simulation. 
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