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Résumé – Nous présentons deux nouvelles transformées parcimonieuses en 3D, qui sont les deux extensions 3D des curvelets
2D première génération. Ces transformées ont des atomes qui ressemblent à des plans ou des filaments, et permettent de bien
représenter les éléments de co-dimension un et deux dans un volume 3D. Nous appliquons ces transformées du dbruitage et de
l’inpainting de données 3D et 2D+temps (vidéo).

Abstract – We present two new sparse 3D transforms, which are the two 3D extensions to the first generation 2D curvelets.
These transforms have plane- and filament-like atoms, and aim at representing elements of co-dimension one or two in a 3D
volume. We show the applicability of these transforms to 3D data and 2D video inpainting and denoising.

1 Introduction

Since the beginning of the multiscale approach in image
processing, an important gap has been crossed with the
arrival of directional transforms and the curvelet trans-
form, as their mainly isotropic wavelet predecessors failed
to represent the curvilinear edges in images. In fact, the
curvelet transform provides atoms which are well localized
in position, scale and orientation. This tool is now well
known and used in many applications such as denoising
[5], inpainting [4] or deconvolution [6].

With the increasing capabilities of computers, it be-
comes feasible to analyze the 3D data we get as a vol-
ume and not only as slices. In order to deal with this
data, we need to develop tools, among which the multi-
scale ones like the wavelets, and to design new directional
transforms.

In the second section, we present two new 3D trans-
forms, as extensions of the 2D first generation curvelet
transform (of which we skip the explanation for this re-
sume). In the third one, we show that they can be power-
ful tools in applications like denoising and inpainting on
3D data, wether it is real 3D space or video (2D space
plus time).

2 3D extensions to the 2D First
generation curvelet transform

2.1 The RidCurvelet transform

The first generation 2D curvelet transform is built from
the Radon transform, which aims at representing lines in
an image. It is from this core idea that we extend the
overall construction to build the 3D Curvelet transforms.
There are two ways of extending the Radon projection in
three dimensions, which lead to the two transforms de-
scribed below. The first one is obtained by projecting
on a line (3D Radon transform), which leads to the Rid-
Curvelets, and the second by projecting only on planes
(3D partial Radon transform), which leads to the Beam-
Curvelets. The first extension of the first generation curvelet
transform in 3D is accomplished by using the 3D ridgelet
transform [2], a transform based on the 3D Radon trans-
form. A three-dimensional ridge function is given by :

ψs,k,θ1,θ2(x1, x2, x3) = s−1/2 · (1)
ψ
(

1
s (x1 cos θ1 cos θ2 + x2 sin θ1 cos θ2 + x3 sin θ2 − k)

)
,

As we can see, a ridge function is parametrized by a scale
parameter s, a position k and a direction (θ1, θ2), which
is a set of two angles in 3D. The transform consists in
summing the cube over planes at every direction and po-
sition. For a fixed direction (θ1, θ2), the summation gives
us a line. Each point on this line represents a plane in



the original cube. It is a projection of the cube on a
line passing through the origin at a given angle. Then
we apply a mono-dimensional wavelet transform on each
of these lines to obtain the ridgelet transform. The 3D
ridge function obtained is useful for representing planes
in a 3D space. This 3D Ridgelet is applied blockwise
(possibly with overlapping windows) to the scales of an
isotropic wavelet transform in order to achieve the Rid-
Curvelet transform. The global scheme in real space is
illustrated on figure 1. An atom is shown on figure 3a.
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Fig. 1: Global flow graph of a 3D RidCurvelet transform.

2.2 The BeamCurvelet transform

The other extension of the curvelet in 3D is done by using
the 3D Beamlet transform [3] instead of the ridgelets. A
three-dimensional beam function is given by :

ψs,k1,k2,θ1,θ2(x1, x2, x3) = s−1/2ψ( (2)
(−x1 sin θ1 + x2 cos θ1 + k1)/s,
(x1 cos θ1 cos θ2 + x2 sin θ1 cos θ2 − x3 sin θ2 + k2)/s).

Compared to 3D ridgelets, which sum over planes, the
beamlet sums over the lines (θ1, θ2), which gives us a plane
for each direction. The transform consists in summing the
cube over lines at every direction and position. For a fixed
direction (θ1, θ2), the summation gives us a plane. Each
point on this plane represents a line in the original cube.
We then apply a two dimensional wavelet transform on
each plane to obtain the Beamlet transform. This 3D
Beamlet is applied blockwise to the scales of an isotropic
wavelet transform in order to achieve the BeamCurvelet
(BC) transform. The 3D BeamCurvelet functions aim at

representing filaments in a 3D space. The global scheme
is illustrated on figure 2. An atom is shown on figure 3b.
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Fig. 2: Global flow graph of a 3D BeamCurvelet (BC)
transform.
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Fig. 3: An example of (a) RidCurvelet and (b) Beam-
Curvelet atom.

3 Applications

3.1 Denoising

One standard application when using sparse representa-
tions is the denoising. It can be done easily using a thresh-
olding operator. The morphological specificity of the Beam-
Curvelets is interesting when dealing with datasets with
strong filamentary structures. An example in spatial 3D
density is the λCDM astrophysical simulation. Figure 4
shows a slice of the perfect cube and the noisy data (addi-
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Fig. 4: The central slice of (a) the original λCDM
data cube, (b) the noisy data, (c) the data recovered by
Wavelet Thresholding, and (d) recovered by combining
the Wavelets and the BeamCurvelets.

Isotropic wavelets BeamCurvelets & wavelets
76.2 78.6

Tab. 1: PSNR of the filtered λCDM datacube.

tive gaussian noise). The undecimated wavelet denoising
doesn’t recover the filaments, while combining it [7] with
the new BeamCurvelet transform improves greatly the
results, recovering the main filamentary structure. The
quantitative PSNRs of the filtered data are found in table
1.

The new transforms perform well on standard video de-
noising (mobile, silent, ...), and have PSNR similar to that
of the Undecimated Wavelet Transform. In videos con-
taining filaments, like in biomedical imaging, we would
expect a significant improvement.

3.2 Inpainting

There are several physical problems that can cause loss
of data. In video, we can have pixels with an abnormal
behavior, a crashed line, or even a frame lost in trans-
mission or any other problem. In order to simulate these
missing pixels, we create a binary mask M with 0 (resp.
1) on missing (known) pixels, with which we multiply the
video. Then we apply an inpainting algorithm to recover
the video everywhere. The functional we wish to minimize
through Alg. 1 is

arg min
x

∑
k

‖ΦTk x‖0 s.t. y = Mx, (3)

where Φ and ΦT are respectively the backward and for-
ward transforms, x our unknown and y the observed data
with missing pixels.

The mask we use in our simulations presents a line
of dead pixels, 5% random malfunctioning pixels at each
frame, three clusters of dead pixels, and a slowly rotating
2-pixel-wide swirl of missing pixels (see figure 5b, in dark
red). It also contains three completely lost frames, two of
which are consecutive. We apply this mask to the stan-
dard video mobile found on www.cipr.rpi.edu, and inpaint
the data using algorithm 1, similar to the one presented in
[4], with either the 3D undecimated tri-orthogonal wavelet
transform with CDF 7/9 filters, or the RidCurvelet trans-
form, or both iteratively. The choice of the RidCurvelets
against the BeamCurvelets comes from the structure of
ordinary (standard) videos, which contain edges, adapted
for RidCurvelets, and not 3D filaments as used in the de-
noising section. Figure 5 shows the central frame of the
video, with and without mask, and two frames of the re-
construction using different transforms : the central (nor-
mal) frame, and one of the two contiguous missing frames.
For the normal frames (not entirely missing), we see that
the wavelet inpainting reconstructs smoothly the missing
areas, while the RidCurvelet one reconstructs the struc-
ture but adds some noise and artifacts in the process (see
the flowers in the center of the image). Using both trans-
forms leads to a very good compromise, with distinct edges
as well as less noise and artifacts. The PSNR of these re-
constructions are shown on table 2. As for the missing
frames, the RidCurvelets reconstruct it with a lot of de-
tails, though a little noisy (which can easily be removed
afterwards), while wavelets only get the low frequencies.
Using both transforms leads to the best result.

Algorithm 1: The Inpainting Process
Data: A mask M (its complementary M̄), the

observed data x = My, y being the unknown
cube , the number of iterations N , an initial
threshold level λ(0). K dictionaries Φk and the
forward transforms associated ΦTk , k ∈ [[1,K]]

Result: The estimate x(N) of y.
Let HTλ(n) be the hard-thresholding operator with
threshold λ(n).
begin

x(0) = y
for n = 1 to N do

λ(n) = λ(0)(N − 1− n)/(N − 1)
x̃ = xn−1

for k = 1 to K do
x̃ = Φk HTλ(n)

(
ΦTk [x̃+M (y −Mx̃)]

)
= Φk HTλ(n)

(
ΦTk
[
y + M̄x̃

])
x(n) = x̃

end



Wavelets BC BC & W
Standard frames 30.9 33.6 35.0
Missing frames 22.7 28.3 28.3
Global 28.4 30.4 34.3

Tab. 2: PSNR of the inpainted mobile sequence.

4 Conclusion

We presented here two new sparse 3D representations with
plane- filament-like atoms, the BeamCurvelet being the
only existing transform representing filaments at every
scale in a 3D volume. We showed that they can be used to
denoise specific data-sets with special morphology where
the classical tools are not optimal. We also investigate the
inpainting problem in video, and demonstrate the power
of this kind of transforms to fill-in random missing pix-
els as well as clusters or even reconstruct missing frames
when conjointly used with wavelets.
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Fig. 5: Central frame of (a,b) the original video without
and with the missing pixels mask (in dark red). (c,e,g)
Central frame result of inpainting using respectively the
Wavelets, the BEamCurvelets or both. (d,f,h) Recon-
struction of one of the two consecutive missing frames of
the video, in the same order as the left column.


