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Abstract – The simultaneous relay channel is defined as a discrete memoryless relay channel where the source is unaware of the channel
statistic controlling the communication but knows that it is one of two the possible channel statistics. The achievable rates and cooperative
strategies are analyzed for this channel. Applications of these results arise when the source node is uncertain of the noise levels or the network
topology (e.g. due to user mobility the positions of the relay and the destination nodes are unknown). This problem is recognized as being
equivalent to that of sending common and private information to two destinations in presence of two helper relays. In this scenario, each possible
relay channel becomes a branch of a broadcast relay channel. The coding for this problem is designed such that it is adaptable to each channel
and can guarantee a minimum achievable rate for both channels while sending more information in each case. An achievable rate region along
with a general upper bound are presented for the simultaneous relay channel. It is shown that these bounds are tight for the case of semi-degraded
simultaneous relay channels and Gaussian degraded simultaneous relay channels. Moreover it is shown that the Block Markov code can be used
for both Decode-and-Forward (DF) and Compress-and-Forward (CF) and thus it is an oblivious code to cooperative strategies.

1 Introduction

Cooperative networks have been of huge interest during recent
years between researchers. Using the multiplicity of informa-
tion in nodes, these networks can increase in capacity and re-
liability using the appropriate strategy. The simplest of these
networks is the relay channel. A fundamental contribution was
made by Cover and El Gamal [1], where the main strategies of
Decode-and-Forward (DF) and Compress-and-Forward (CF),
and an upper bound were developed for this channel along with
capacity theorems for special classes of relay channels.

The specification of wireless networks undergoes the exten-
sive changes due to a variety of factors (e.g. interference, fad-
ing and user mobility). As a consequence, even when the chan-
nels are quasi-static, it is often difficult for the source to know
the noise level of the relay link. Hence, the encoder is unable to
decide on the suitable coding strategy that would better exploit
the presence of the relay. This scenario is frequently seen in ad-
hoc networks where the source is often assumed to be unaware
of the presence of relay users yet in most of the previous works
the channel is assumed to be fixed and known to all the users.
In practical networks like Ad hoc networks, the channel is not
known before the communication and most of these cases can
be conceived as a Simultaneous Relay Channel.

The Simultaneous Relay Channel (SRC) is defined as a relay
aided communication between a source and a destination where
the source is not aware of the channel however it knows that
the probability distribution of the channel(W ) belongs to the
set W . The source knowing all the possibilities sends the com-
mon information which can be decoded regardless of the actual
channel and furthermore sends the private information corre-
sponding to the actual case. The problem involves a straight-

forward relation with the cases of compound channel, broad-
cast channels and evidently relay channels. The problem offers
a vast perspective of the practical application in the cooperative
networks.

In this paper we investigate the simultaneous relay channel
(SRC) with two possible channel outcomes. It can be shown
that the problem of simultaneous channels can be turned into
the problem of broadcast channels. Thus the problem of simul-
taneous relay channel can be seen as related to sending com-
mon and private informations over the broadcast relay channel
(BRC) where each destination is aided by its own relay. This
idea, usually called broadcasting strategy was used in [2, 3].
Particularly this idea was developed for the relay channels in
[4].

2 Definitions and Main Results

2.1 Problem Definition
The simultaneous relay channel with discrete source, relay in-
puts x ∈ X , xT ∈ XT and discrete outputs yT ∈ YT ,
zT ∈ ZT , is characterized by two conditional probability dis-
tributions (PDs)

{
WT : X ×XT 7−→ YT ×ZT

}
T=1,2

, where
T is the channel index. It is assumed that the encoder (source
node) is unaware of the realization of T that governs the com-
munication, but T should not change during the transmission.
However, T is assumed to be known at the destination and the
relay ends.

Definition 1 (Code) A code for this relay channel consists of
an encoder mapping {ϕ : M1n×M2n 7−→X n}, two decoder
mappings {ψT : Y n

T 7−→ MTn} and a set of relay functions
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(a) The simultaneous relay channel
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(b) BRC with two relays
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(c) BRC with common relay

FIG. 1: The simultaneous relay channel

{fT,i}ni=1 such that {fT,i : Z i−1
T 7−→ X n

T }ni=1, for some
finite sets of integers MTn =

{
1, . . . ,MTn

}
. The code rates

are n−1 logMTn and its maximum error probability

e(n)max

(
ϕ,ψ, {fT,i}ni=1

) .
= max
T=1,2

max
w∈MTn

Pr
{
ψ(YT ) 6= w

}
.

Definition 2 (Achievable rate and capacity) A pair of num-
bers (R1, R2) ∈ R+2 is an achievable rate pair for the si-
multaneous relay channel if for every 0 ≤ ε, γ < 1 and for
sufficiently large n there exist n-length block code whose error
probability satisfies e(n)max

(
ϕ,ψ, {fT,i}ni=1

)
≤ ε and the rates

n−1 logMTn ≥ RT − γ. The set of all achievable rates is
called the capacity region for the simultaneous relay channel.

Since the relay and the receiver are aware of the realization
of T , it is not difficult to see, as shown in Fig. 1(b), that the
problem of coding for the simultaneous relay channel can be
turned into that of the BRC. The BRC consists of two relay
links, each one equivalent to the relay channel with T = {1, 2}.
We allow the encoder to send common and private information
to the receivers, where each relay serves the reliable transmis-
sion of its own information to the destination. The messages
(W0,Wi) are sent to the destination T = i at the rates (R0, Ri)
with i = {1, 2}, all messages are assumed independent. The
definitions of achievability for the rates (R0, R1, R2) and that
of capacity remain the same as for standard BCs (see [5–7]).

2.2 The bounds on the capacity of broadcast re-
lay channel

Consider a broadcast relay channel with two relay. It is as-
sumed that for one channel the better strategy is DF and for
another one is CF. This is the common case when we don’t
know that the relay is close to the transmitter or to the receiver.
The following theorem presents an inner bound for the general
channel using such scenario.

Theorem 2.1 An inner bound on the capacity region of the

BRC with heterogeneous cooperative strategies is given by [4]

RI
.
=
⋃
P∈P

{
(R0 ≥ 0,R1 ≥ 0, R2 ≥ 0) :

R0 +R1 ≤ I1
R0 +R2 ≤ I2 − I(U2;X1|U0V0)

R0 +R1 +R2 ≤ I1 + J2 − I(U1X1;U2|U0V0)

R0 +R1 +R2 ≤ J1 + I2 − I(U1X1;U2|U0V0)

2R0 +R1 +R2 ≤ I1 + I2 − I(U1X1;U2|U0V0)
}
,

where the quantities (Ii, Ji) with i = {1, 2} are given by

I1
.
= min

{
I(U0U1;Z1|X1V0), I(U1U0X1V0;Y1)

}
,

J1
.
= min

{
I(U1;Z1|X1U0V0), I(U1X1;Y1|U0V0)

}
,

I2
.
= I(U2U0V0; Ẑ2Y2|X2), J2

.
= I(U2; Ẑ2Y2|X2U0V0),

and the set of all admissible PDs P is defined as

P
.
=
{
PV0U0U1U2X1X2XY1Y2Z1Z2Ẑ2

= PV0PX2PX1|V0

PU0|V0
PU2U1|X1U0

PX|U2U1
PY1Y2Z1Z2|XX1X2

PẐ2|X2Z2
,

I(X2;Y2) ≥ I(Z2; Ẑ2|X2Y2),
(V0, U0, U1, U2) 
 (X1, X2, X) 
 (Y1, Z1, Y2, Z2)

}
.

In particular it is interesting to look at the case where we are
interested only in common information R0. Then the corollary
below follows directly of previous theorem:
Corollary 1 (common-information) A lower bound on the ca-
pacity of the compound (or common-message BRC) relay chan-
nel is given by

R0 ≤ max
PX1X2X

∈P
min

{
I(X;Z1|X1), I(X,X1;Y1),

I(X; Ẑ2Y2|X2)
}
.

This corollary shows that the Block Markov coding using back-
ward decoding can be used for CF case as well without the per-
formance loss. So the same code can be used for both DF and
CF which means that the code is oblivious toward the cooper-
ative strategy. The oblivious codes are of high practical impor-
tance because they can be used in random cooperative networks
where the source is not aware of the relay cooperative strategy.



Now consider the case of broadcast relay channel with com-
mon relay Fig. 1(c). Assume that the relay is using DF strategy.
The following theorem proves an inner bound on this chan-
nel: [4]
Theorem 2.2 An inner bound on the capacity region of the
BRC-CR is given by the set of the rates (R1, R2) satisfying:

R(BRC)
I

.
=

⋃
pUVX1X

∈P

{
(R0 ≥ 0, R1 ≥ 0) :

R0 ≤ I(U, V ;Y2)− I(U ;X1|V ),
R0 +R1 ≤ min

{
I(X;Z1|X1, V ), I(X,X1;Y1)

}
R0 +R1 ≤ min

{
I(X;Z1|X1, U, V ), I(X,X1;Y1|U, V )

}
+I(U, V ;Y2)− I(U ;X1|V )

}
for all PDs P

PUVX1X = PX|UX1
PX1U |V PV ,

(U, V ) 
 (X1, X) 
 (Y1, Z1, Y2).

It will be shown later that this rate is capacity achieving for a
class of broadcast relay channels. The following theorem states
an upper bound over the capacity of BRC:
Theorem 2.3 (outer bound BRC) The capacity region CBRC

of the BRC is included in the set C out
BRC of all rates (R0, R1, R2)

satisfying

C out
BRC = co

⋃
PV V1U1U2X1

∈Q

{
(R0 ≥ 0, R1 ≥ 0, R2 ≥ 0) :

R0 ≤min
{
I(V ;Y2), I(V ;Y1)

}
,

R0 +R1 ≤min
{
I(V ;Y1), I(V ;Y2)

}
+ I(U1;Y1|V ),

R0 +R2 ≤min
{
I(V ;Y1), I(V ;Y2)

}
+ I(U2;Y2|V ),

R0 +R1 ≤min
{
I(V, V1;Y1, Z1|X1), I(V, V1;Y2, Z2)

}
+ I(U1;Y1, Z1|V, V1, X1),

R0 +R2 ≤min
{
I(V, V1;Y1, Z1|X1), I(V, V1;Y2, Z2)

}
+ I(U2;Y2, Z2|V, V1, X1),

R0 +R1 +R2 ≤I(V ;Y1) + I(U2;Y2|V ) + I(U1;Y1|U2, V ),

R0 +R1 +R2 ≤I(V ;Y2) + I(U1;Y1|V ) + I(U2;Y2|U1, V ),

+ I(U1;Y1, Z1|X1, U2, V, V1),

R0 +R1 +R2 ≤I(V, V1;Y2, Z2) + I(U1;Y1, Z1|V, V1, X1)

+ I(U2;Y2, Z2|X1, U1, V, V1)
}
,

where co{·} denotes the convex hull and Q is the set of all joint
PDs PV V1U1U2X satisfying X1 
 V1 
 (V,U1, U2, X).
If relays are not present, i.e., Z1 = Z2 = X1 = X2 = V1 = ∅,
it is not difficult to see that the previous bound reduces to the
outer bound for general broadcast channels refers to as UVW -
outer bound [8]. Furthermore, it was recently shown that such
bound is at least as good as all the currently developed outer
bounds for the capacity region of broadcast channels

2.3 Capacity Results
In this section capacity results are presented. We define first
two class of a broadcast relay channels with common relay.

Definition 3 (degraded BRC) A broadcast relay channel with
common relay (BRC-CR) (as is shown in Fig. 1(c)) is said to be
(or semi) degraded if the stochastic mapping

{
W : X ×X1×

X2 7−→ Y1 × Z1 × Y2 × Z2

}
satisfies one of the following

Markov chains:

(I) X 
 (X1, Z1) 
 (Y1, Y2) and (X,X1) 
 Y1 
 Y2,

(II) X 
 (X1, Z1) 
 Y2 and X 
 (Y1, X1) 
 Z1,

where conditions (I) and (II) are referred to as degraded and
semi-degraded BRC-CR, respectively.

The degraded BRC-CR is combination of the degraded relay
channel with degraded broadcast channel. On the other hand,
semi-degraded case is the combination of the degraded and re-
versely degraded relay channel.

Now we are ready to give the following capacity results.

Theorem 2.4 The capacity region of the semi-degraded BRC-
CR is given by the following rate region

CII
.
=

⋃
PUX1X

∈P

{
(R0 ≥ 0, R1 ≥ 0) :

R0 ≤ min{I(U,X1;Y2), I(U ;Z1|X1)}
R0 +R1 ≤ min{I(U,X1;Y2),

I(U ;Z1|X1)}+ I(X;Y1|X1, U)
}
,

where P is the set of all joint PDs PUX1X satisfying that U 

(X1, X) 
 (Y1, Z1, Y2) where |U | ≤ |X | |X1|+ 2.

Finally we give the capacity result of Gaussian channel. First
we define the degraded Gaussian BRC-CR as

Y1 = X +X1 + N1, Y2 = X +X1 + N2,

Z1 = X + Ñ1

where the source and the relay have power constraints P, P1,
and N1,N2, Ñ1 are independent Gaussian noises with variances
N1, N2, Ñ1, respectively, such that the noises N1,N2, Ñ1 sat-
isfy the necessary Markov conditions in definition 3. Note that
it is enough to suppose the physical degradedness of receivers
respect to the relay and the stochastic degradedness of one re-
ceiver respect to another. It means that there exist N ,N ′ such
that:

N1 = Ñ1 + N , N2 = Ñ1 + N ′.

and also N1 < N2. The following theorem states the capacity
of degraded Gaussian BRC with common relay similar to [9].

Theorem 2.5 The capacity region of the degraded Gaussian
BRC-CR is

R0 ≤ C

(
α(P + P1 + 2

√
βPP1)

α(P + P1 + 2
√
βPP1) +N2

)
,

R1 ≤ C

(
α(P + P1 + 2

√
βPP1)

N1

)
, R1 ≤ C

(
βγP

Ñ1

)
R0 +R1 ≤ C

(
βP

Ñ1

)
where 0 ≤ β, α, γ ≤ 1.
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FIG. 2: Gaussian BRC with DF-CF strategies
3 Gaussian Example: Oblivious Coding
In this section we show the practical application of oblivious
coding in the theorem 1. Consider first lower and upper bounds
on the common-rate for the DF-CF region. The definition of the
channels are as follows:

Y1i =
Xi√
dδy1

+
X1i√
dδz1y1

+ N1i, and Z1i =
Xi√
dδz1

+ Ñ1i,

Y2i =
Xi√
dδy2

+
X2i√
dδz2y2

+ N2i, and Z2i =
Xi√
dδz2

+ Ñ2i.

The channel inputs {Xi} and the relay inputs {X1i} and {X2i}

must satisfy the power constraints
n∑
i=1

X2
i ≤ nP and

n∑
i=1

X2
ki ≤

nPk for k = {1, 2}.

We set X = U +

√
βP

P1
X1 and evaluate Corollary 1. The

goal is to send common-information at rate R0. It is easy to
verify that the two DF rates result in RDF ≤

min
{
C

(
βP

dδz1
Ñ1

)
, C


P

dδy1
+

P1

dδz1y1
+ 2

√
βPP1

dδy1d
δ
z1y1

N1


}
,

where the CF rate I(U,X1;Y2, Ẑ2|X2) follows as

RCF ≤ C

(
P

dδy2N2
+

P

dδz2(N̂2 + Ñ2)

)
. (1)

Observe that the rate (1) is exactly the same as the Gaussian CF
[6]. This means that DF regular encoding can also be decoded
with the CF strategy, as well for the case with collocated relay
and receiver. By using the proposed coding it is possible to
send common information at the minimum rate between CF
and DF schemes R0 = min{RDF , RCF }.

Fig. 2 shows numerical evaluation of R0 for the common-
rate case. All channel noises are set to the unit variance and
P = P1 = P2 = 10. The distance between X and (Y1, Y2)
is 1, while dz1 = d1, dz1y1 = 1 − d1, dz2 = d2, dz2y2 =
1 − d2. The position of the relay 2 is assumed to be fixed to
d2 = 0.7 but the relay 1 moves with d1 ∈ [−1, 1]. This setting
serves to compare the performances of our coding schemes re-
garding the position of the relay. It can be seen that one can
achieves the minimum between the two possible CF and DF
rates. These rates are also compared with a naive time-sharing
strategy which consists in using DF scheme τ% of the time
and CF scheme (1− τ)% of the time1. Time-sharing yields the
achievable rate

RTS = max
0≤τ≤1

min{τRDF , (1− τ)RCF }.

Notice that with the proposed coding scheme significant gains
can be achieved when the relay is close to the source (i.e. DF
scheme is more suitable), comparing to the worst case.
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