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Résumé – Nous étudions le problème de la sélection d’un modèle paramétrique localement stationnaire pour un signal aléatoire
à longue mémoire. Le nombre de ruptures et leurs localisations sont inconnus ainsi que les paramètres de chaque sous-série. Nous
proposons un critère basé sur le principe de description de longueur minimale (“Minimum Description Length”) pour sélectionner
le meilleur modèle. L’optimisation de ce critère est réalisée au moyen d’un algorithme génétique. Des simulations de Monte Carlo
montrent que ce critère est plus performant que le critère BIC et le critère proposé par Davis et al. (2006). L’application de la
méthode aux données réelles du Nil entre 622 et 1284 av. J-C confirme d’autres études concluant à un changement structurel des
données autour de 722 av. J-C.

Abstract – We study the model selection problem for a locally stationary long memory signal by dividing the signal into
stationary blocks. In this piecewise model, the number and the locations of the break points are unknown as well as the
parameters of each regime. We propose a model selection criterion based on the minimum description length (MDL) principle.
Monte Carlo simulations show that our criterion performs better than BIC and the criterion proposed by Davis et al. (2006).
The application of our method to the Nile river data for the years 622-1284 AD confirms previous studies which conclude that a
structural break exists around the year 722 AD.

1 Introduction

Fitting a piecewise stationary model to data consists in
identifying the different blocks and in selecting and es-
timating an appropriate model for each stationary piece.
This problem is addressed by Kitagawa and Akaike (1978)
and Davis et al. (2006) when the pieces are autoregressive
processes, and by Davis et al. (2008) when the blocks are
a type of nonlinear time series including piecewise gen-
eralized autoregressive conditionally heteroscedastic pro-
cesses. Here, we are interested in long range dependent
(LRD) processes. These type of series appear in many ar-
eas, including hydrology, meteorology, economics, finance
and telecommunications; see for instance, Beran (1994)
and Taqqu and Teverovsky (1997). A commonly used
model for LRD processes is the FARIMA model, intro-
duced by Granger and Joyeux (1980) and Hosking (1981).
The main feature of a stationary FARIMA process is that
its covariance function decays hyperbolically, while the co-
variance function of an ARMA process at least decays ex-
ponentially.

In practice, estimating a LRD model accurately requires
more data than estimating a short-memory model, which
in turn, increases the chance of structural changes over

time. Much of real data exhibit both structural changes
and LRD; see e.g. Beran and Terrin (1994). Then, it may
be unrealistic to assume that the data can be modeled by
a stationary process with constant parameters. Previous
studies discussing structural changes in LRD processes in-
clude Gil-Alana (2008) who considers a linear regression
with a fractional noise disturbance where the sub-series
have different regression coefficients and fractional orders.
Ray and Tsay (2002) use a Bayesian method for detect-
ing the changes in the mean and the LRD parameter of a
FARIMA process with a fixed ARMA part.

This work proposes a piecewise FARIMA process to
model a local stationary long-memory time series. It is a
pure structural change model in the sense that all param-
eters including the ARMA orders are allowed to change
between two regimes. Moreover, the number of structural
BPs is assumed to be unknown. Fitting data to this model
can be treated as a statistical model selection problem
which can be solved by the minimum description length
(MDL) principle by Rissanen (1978). MDL principle is
used by Davis et al. (2006) for a piecewise AR process,
and by Davis et al. (2008) for some nonlinear piecewise
stationary time series. Empirical results show good per-
formance results for estimating the BP number and their



locations for these models. Here, we adapt the MDL prin-
ciple to the piecewise FARIMA process. The implemen-
tation of this principle leads to a criterion which performs
well in practice.

The rest of this article is organized as follows. In Sec-
tion 2, we introduce the piecewise stationary FARIMA
model and in Section 3, we present the criterion based on
the MDL principle. In Section 4, Monte Carlo simulation
results are presented and in Section 5, the yearly minima
of the Nile river data is considered. Finally, concluding
remarks are given in Section 6.

2 Piecewise FARIMA model

We address the multiple structural change problem for a
non-stationary time series in which the segments are mod-
elled by stationary zero-mean FARIMA processes. More
precisely, let m denote the unknown BP number and n
the length of the time series. For j = 1, . . . ,m, let τj be
the BP between the jth and (j + 1)th FARIMA regime,
and set τ0 = 1 and τm+1 = n + 1. For j = 1, . . . ,m + 1,
the jth piece of the observed time series {Yt} is modeled
by

Yt = Xt+1−τj−1,j , τj−1 ≤ t < τj , (1)

where {Xt,j}, t ∈ Z, is the FARIMA(pj , dj , qj) process
defined by the difference equation

Φj(B)Xt,j = Θj(B)(1−B)−djσjεt,j , (2)

{εt,j}, t ∈ Z, j = 1, . . . ,m + 1, is a sequence of iid zero-
mean Gaussian random variables with unit variance, σj >
0, B is the backward operator BXt = Xt−1, dj ∈ (0, 1/2),
and the polynomials Φj(z) = 1−φj,1z−· · ·−φj,pjzpj and
Θj(z) = 1+θj,1z+ · · ·+θj,qjz

qj with real coefficients have
no common zeros and neither Φj(z) nor Θj(z) has zeros
in the closed unit disk {z ∈ C : |z| ≤ 1}. The process
(1−B)−dj εt,j is defined by

(1−B)−dj εt,j =

∞∑
k=0

ϕk(dj)εt−k,j , (3)

where ϕ0(dj) = 1 and ϕk(dj) =
∏k
s=1

dj+s−1
s for k ≥ 1.

Since dj < 1/2,
∑∞
k=0 ϕk(dj)

2 <∞.
The parameters of the jth regime are αj = (dj , φj,1, . . .,

φj,pj , θj,1, . . . , θj,qj , σj) and αj is constant for each interval
[τj−1, τj). The piecewise FARIMA process {Yt} is charac-
terized by the BP number m, the BP locations τ1, . . . , τm
and the parameters α1, . . . , αm+1.

3 Model selection using MDL

Fitting model (1)–(2) to the data y = (yi)1≤i≤n consists in
finding the“best”vector γ = (m, τ1, . . . , τm, α1, . . . , αm+1).
This can be treated as a statistical model selection prob-
lem in which candidate models may have different number

of parameters. One efficient strategy to solve this prob-
lem is to use the MDL principle. By viewing statistical
modeling as a way of generating descriptions of observed
data, the central idea of the MDL principle is to represent
an entire class of candidate probability distributions as
models, and to select the model which allows the shortest
coding of the data and of the model itself.

We adopt the two-part description length method used
by Rissanen; see e.g. Lee (2001). Let L(·) denote the code
length of an object. Then using model (1)–(2) to encode
y, L(y) can be decomposed into

L(y) = L(γ̂) + L(y|γ̂),

where γ̂ is vector γ in which parameters α1, . . . , αm+1 are
replaced by the maximum likelihood estimates (MLEs)
α̂1, . . . , α̂m+1 and L(y|γ̂) is the code length for encoding
y with model (1)–(2) defined by γ̂. The “best” model is
the one minimizing L(y).

Let us first derive an expression for L(γ̂). Let nj = τj−
τj−1 be the number of observations in the jth FARIMA
regime. Since the τj ’s contain the same information as the
nj ’s, we have

L(γ̂)=L(m) +

m+1∑
j=1

{L(nj)+L(pj)+L(qj)+L(α̂j)} . (4)

According to Rissanen (1983), for any nonnegative integer
x, we have

L(x)=

{
log2 c+ log2 x+ log2 log2 x+ · · · if x > 0,

0 if x = 0,
(5)

where c is a constant approximately equal to 2.865 and the
sum involves only the nonnegative terms, whose number
is clearly finite. To determine L(α̂j), we use the follow-
ing result of Rissanen (1989) : a MLE of a real-valued
parameter computed from N data can be effectively en-
coded with 1

2 log2N bits. Each of the pj + qj + 2 param-
eters in α̂j is computed from nj data. Therefore, we have

L(α̂j) =
pj+qj+2

2 log2 nj .
According to Rissanen (1989), L(y|γ̂) is the negative

of the log2-likelihood function at the MLEs α̂1, . . . , α̂m+1.
Since the segments in model (1)–(2) are independent and
Gaussian, we have

L(y|γ̂) =

m+1∑
j=1

Lj(yj ; α̂j), (6)

where

Lj(yj ; α̂j) =
nj
2

log2(2π)+
1

2
log2(det V̂j)+

log2 e

2
y′
j
V̂ −1j y

j
,

V̂j is the covariance matrix with size nj of the FARIMA
process {Xt,j} in (2) where the vector of parameters αj is
replaced by α̂j , and y

j
= (yτj−1

, . . . , yτj−1)′ is the vector

of observations in the jth piece in (1). Combining (4) and



(6), we propose to select the best model (1)–(2) for y as the
one that minimizes with respect to (m, τ1, . . . , τm, p1, . . . ,
pm+1, q1, . . . , qm+1) criterion C defined by

C = L(m) +

m+1∑
j=1

{L(nj) + L(pj) + L(qj)+

pj + qj + 2

2
log2 nj + Lj(yj ; α̂j)}, (7)

where functions L and Lj are defined by (5) and (3), re-
spectively.

Applying the criterion proposed by Davis et al. (2008)
to model (1)–(2) amounts to minimize with respect to
(m, τ1, . . . , τm, p1, . . . , pm+1, q1, . . . , qm+1) function D de-
fined by

D = log+
2 m+ (m+ 1) log2 n+

m+1∑
j=1

{log+
2 pj + log+

2 qj+

pj + qj + 2

2
log2 nj + Lj(yj ; α̂j)}, (8)

where for any nonnegative integer x, log+
2 x = log2 x if

x ≥ 1 and log+
2 0 = 0. On the other hand, optimizing the

Bayesian information criterion for model (1)–(2) is equiv-
alent to minimize with respect to (m, τ1, . . . , τm, p1, . . . ,
pm+1, q1, . . . , qm+1) function BIC defined by

BIC =

m+1∑
j=1

{
pj + qj + 2

2
log2 nj + Lj(yj ; α̂j)

}
. (9)

The differences between criteria C, D and BIC lie in
the penalty term. The expression of the code length of an
integer is different in C and D. Observe that L(0) = 0
and L(1) = log2 c in (7), while log+

2 0 = log+
2 1 = 0 in

(8). Moreover, L(x) is significantly different from log2 x
when x is not large, which is the case when x is the BP
number m or the orders (pj , qj) of the FARIMA models.
We compare the performances of these three criteria us-
ing a piecewise FARIMA model with multiple BPs in the
simulation section.

4 Simulation

Since the search space is huge, the practical optimization
of C, D or BIC is a complicated task and we use an au-
tomatic methodology based on a genetic algorithm first
proposed by Holland (1975). In this simulation, we con-
sider a piecewise FARIMA model of length n = 4000 with
three BPs at τ1 = 600, τ2 = 1600 and τ3 = 2400. In
(2), we take σj = 1 for j = 1, . . . , 4; the parameters for
four regimes are (dj , φj , θj) = (0.3, 0, 0) ; (0.1, 0.6,−0.7);
(0.4, 0,−0.5) ; (0.2, 0.8, 0). In the following, we use the
standardized break fraction λj = τj/n, and then the true
break fractions are λ1 = 0.15, λ2 = 0.40, λ3 = 0.60. All re-
sults are based on 1000 replications. We compare criteria

C, D and BIC for the selection of the piecewise model (1)–
(2). The mean values and standard errors of the estimated
break fractions are given in table 1. We see that BIC over-
estimates the BP number in 33% of the cases while C and
D underestimate it in 20% and 28% of the cases, respec-
tively. When the right BP number is selected, all criteria
estimate the break fractions with good precision, C per-
forming the best, in terms of bias and mean-square error.

Criterion m Number Mean and MSE (in parenthesis) of

λ̂j , j = 1, . . . ,m
2 167 0.1502, 0.4004

(3.089e-6),(2.343e-5)
C 2 32 0.1503, 0.6005

(2.734e-6), (2.949e-5)
3 801 0.1502, 0.4001, 0.6002

(2.202e-6), (1.232e-5), (3.062e-5)
2 133 0.1483, 0.4024

(2.328e-5), (9.453e-5)
D 2 146 0.1507, 0.5974

(1.201e-5), (1.001e-4)
3 721 0.1509, 0.4026, 0.6021

(1.027e-5), (7.857e-5), (8.081e-5)
BIC 3 669 0.1533, 0.4040, 0.5929

(3.865e-5), (1.178e-4), (4.568e-4)
4 331 0.1448, 0.3928, 0.6107, 0.8019

(5.261e-5), (1.034e-4), (7.765e-4), (–)

Tab. 1: Estimated BPs.

In table 2, we present the percentage of right orders
selection for the four regimes when C, D and BIC detect
three BPs. All criteria tend to overestimate the orders,
but C behaves better than both D and BIC since it finds
the true orders more often and selects smaller orders in
the other cases (the detailed results are omitted here).

XXXXXXXXXXCriterion
(pj , qj) (0,0) (1,1) (0,1) (1,0)

C 65.66 67.79 83.27 85.02
D 58.67 67.26 78.09 80.03

BIC 50.21 58.51 68.10 69.11

Tab. 2: Percentage of right model orders (pj , qj) selection
for j = 1, . . . , 4.

5 The River Nile data case

The time series of yearly minimal water levels of the Nile
river for the years 622–1284 AD (n = 663) is one of the
prime examples of LRD processes. The data are displayed
in figure 1. A FARIMA(0, d, 0) process with d = 0.40
fits these data well, as shown by Beran (1992) and Beran
(1994). However, Beran and Terrin (1996) reveal that the



series might not be completely homogeneous. Observa-
tions 1 to about 100 seem to be more independent than
the others, implying a smaller value of d for the first 100
data than for the subsequent data. Palma et al. (2008) also
find that there are some possible highly influential obser-
vations around the year 720 AD. Whitcher et al. (2002)
observe that the structure change around this year coin-
cides closely to the construction of a new device in 715
AD for measuring Nile river water levels. Beran and Ter-
rin (1996) fit a FARIMA(0, d, 0) process with d = 0.04
for the years 622–722 AD, and a FARIMA(0, d, 0) process
with d = 0.38 for the years 723–1284 AD.
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Fig. 1: Nile river data (622–1284 AD). The vertical
dashed line indicates the estimated BP location by cri-
terion C.

We apply criterion C to fit a piecewise FARIMA model
to the Nile river data. Criterion C chooses a two-regimes
model with one BP τ̂1 at 722 AD. For the first regime, a
FARIMA(2, d, 2) process with d = 0.03 is selected, while
a FARIMA(0, d, 0) process with d = 0.45 is chosen for the
second regime. These results are very close to the results
of Beran and Terrin (1996) and Whitcher et al. (2002).
Since the first regime has only 100 data, estimation of
orders (p1, q1) needs to be interpreted carefully.

6 Conclusions

In this article, we have proposed a method for modeling
a non-stationary time series as a piecewise FARIMA pro-
cess. The problem is in estimating the BP number and the
locations, and in fitting an appropriate FARIMA model
for each stationary regime. This is achieved by minimiz-
ing a MDL criterion. Numerical experiments have demon-
strated good performance results of the proposed method.
When applying our methodology to the Nile River data a
two regime piecewise FARIMA model with a BP at 722
AD was selected.
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