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Résumé – Les études longitudinales en imagerie requièrent l’évaluation des changements anatomiques au cours du temps sur des populations
représentatives de groupes cliniques. Un exemple typique est l’évaluation des modifications structurales du cerveau avec le vieillissement dans
la maladie d’Alzheimer. Pour un sujet donné, les changements morphologiques longitudinaux peuvent être évalués grâce au recalage non-rigide.
Cependant, ces trajectoires longitudinales doivent être replacées dans un référentiel commun pour être analysées au niveau du groupe. Or si le
transport de fonctions scalaires est clair, le transport de vecteurs ou de déformations est moins bien défini. L’analyse des méthodes existantes
suggère que l’inconsistance des approximations discrètes avec la composition de transformations puisse noyer les déformation longitudinale
relativement faible dans la très grande variabilité inter-sujets. Au lieu d’approximer le transport parallèle continu avec des schémas discrets
inconsistants, nous proposons d’utiliser une construction discrète qui respecte intrinsèquement toutes les symétries du problème : l’échelle de
Schild. Nous proposons une reformulation particulièrement simple dans le cas des cadre de difféomorphismes paramétrés par des champs de
vecteurs stationnaires. Les deux algorithmes implémentant cette construction s’avèrent très efficace et plus consistante que les autres méthodes
avec le rééchantillonage de la plupart des mesures scalaires résumant la déformation longitudinale. Ceci ouvre la voie des statistiques plus
stables sur la transformation de groupe et des statistiques de groupe longitudinales plus puissantes.

Abstract – Follow-up imaging studies require the population-wise evaluation of the anatomical changes over time for specific clinical groups.
A typical example is the analysis of structural brain changes with aging in Alzheimer’s disease. The longitudinal morphological changes for
a specific subject can be evaluated through the non-rigid registration. However, to perform a longitudinal group-wise analysis, the subject-
specific longitudinal trajectories need to be transported in a common reference. The analysis of existing transport methods suggests that the
inconsistency of the discrete approximations with composition could drown the small longitudinal deformations into the large inter-subject
variability. Instead of approximating a continuous parallel transport in an inconsistent discrete setting, we propose to rely on a carefully designed
discrete construction that intrinsically respects all the symmetries on the problem: the Schild’s Ladder procedure. We show that the Schild’s
ladder procedure can be implemented extremely efficiently with great stability in the framework of diffeomorphisms parameterized by stationary
velocity fields (SVF). The proposed algorithm proves to overcome other methods in terms of consistency with respect to the resampling of most
scalar measures of deformations, which opens the way to stable and hopefully more powerful group-wise statistics of longitudinal deformations.

1 Deformations & Morphometry

Computational anatomy is an emerging discipline at the inter-
face of geometry, statistics and image analysis which aims at
modeling and analyzing the biological shape of tissues and or-
gans. The goal is to estimate representative organ anatomies
across diseases, populations, species or ages, to model the or-
gan development across time (growth or aging), to establish
their variability, and to correlate this variability information
with other functional, genetic or structural information.

Following D’Arcy Thompson [4], one often assumes that
there is a template shape or image (called an atlas in medi-
cal image analysis) which represents the standard anatomy, and
that the variability is encoded by deformation of that template
towards the shape of each subject or its evolution in time. This
approach was pushed forward by Grenander and Miller [7] and
turned into a mathematically grounded framework by provid-

ing diffeomorphic space deformations with a sufficiently reg-
ular right invariant metric [18], leading to the so called Large
Deformation Diffeomorphic Metric Mapping (LDDMM) frame-
work. More generally, the local analysis of the deformation
retrieved by any image registration algorithm is an increas-
ingly popular method to statistically study differences in brain
anatomy. This was coined as Deformation-based morphometry
(DBM) by Ashburner [3].

In this context, one should distinguish two types of defor-
mations: the longitudinal analysis of time series of a single
subject gives an insight on the development of the subject spe-
cific anatomy across time (growth, remodeling, aging), while
the cross-section analysis of a group of subjects gives an infor-
mation on the variability of the organ shape in that population.
Distinguishing the two types of deformations is not an easy task
and should be performed with care.



1.1 Cross-section designs

If the shape variability due to evolution is larger than the inter-
subject one, then one may consider the inter-subject variability
as noise and perform a regression with respect to time even
with only one time-point per subject. For instance, the shape
of the left and right ventricles of the heart is fairly well de-
fined and only its size normally depends on the age of the child
in normal subjects. When we consider pathological case, for
instance repaired Tetralogy of Fallot, a remodeling effect per-
turbs the normal growth and drastically affect the shape of the
right ventricle. In that case, a partial-least-squares regression
of the shape changes with respect to age allows us to model
the principle effects of the remodeling of the right ventricle
[12]. The resulting statistical model of growth turns out to have
an anatomically meaningful interpretation which could be as-
sessed by correlating its shape with other clinically important
variable. For instance, the severity of regurgitation is asso-
ciated with a bulging of the outflow tract, a dilatation of the
apex and a global RV dilatation. Such a linear (geodesic) de-
formation model in the LDDMM framework can be extended
to a geodesic by part regression when more complex defor-
mation patterns are sought, potentially including a time-warp
independent of the spatial deformation. When applied to dif-
ferent species (bonobos vs chimpanzees) or to diseases (autism
vs control), this model suggests that the change in the speed of
evolution might sometimes be more important than the shape
differences [5].

1.2 Longitudinal designs

In most cases, longitudinal changes of organs are quite small
compared to inter-subject variations. In pathologies such as de-
mentia and in particular Alzheimer’s Disease (AD), it is quite
clear now that longitudinal measures are more sensitive (but
way smaller) than cross-sectional differences for distinguish-
ing normal aging from mild-cognitive impairments (MCI) from
AD. As longitudinal measures are done at the individual level,
we need to normalized them in a standard reference anatomy
in order to obtain statistical significant localization of these
changes at the population level (group-wise statistics).

In many cases, one consider a scalar summary of the lon-
gitudinal changes fi(x, t) at the subject-specific level and a
(diffeomorphic) deformation Ψi(x) relating the template to the
inter-subject coordinate systems. In fMRI, the scalar function
can be the z-score of the statistical correlation of the input to
the signal. For morphological changes, the map of the deter-
minant of the Jacobian fi(x, t) = |∇φi(x, t)| of the longitu-
dinal deformation φi(x, t) represents the local volume change.
Other measurements are possible: the log of the above deter-
minant can be interpreted as the local flux of the deformation
through the volume element [9], the L2 norm of the displace-
ment field, the local Henky or St Venant-Kirchoff elasticity en-
ergy [13], the norm of the momentum in LDDMM methods,
etc. In all these cases, the natural normalization method is to
resample the function values in the template coordinate space
f̂i(x, t) = fi(Ψi(x), t).

Notice however that when the map considered is a density
(e.g. gray or white matter density in VBM), a volume-preserving
modulation is applied to correct for the volume change of the
integration element [2]. This is the simplest example of the
more complex situation where the geometric nature of the lon-
gitudinal measure should be taken into account. For instance
vector fields should be reoriented according to the gradient of
the inter-subject deformation in order to take into account the
local rotation and skew of the deformation. Likewise, it is con-
sidered in diffusion tensor imaging that the directions of diffu-
sion should be reoriented, but not the eigenvalues which have
a physical meaning. This lead to potentially multiple ways to
define the optimal rotation of a tensor, like Preservation of the
Principal Directions (PPD) or the Finite Strain (FS) [16].

2 Normalizing longitudinal deformations
Transporting a scalar summary of the changes over time is nu-
merically stable and allows elaborating statistical difference
maps at the group level. However, this does not allow to go
much beyond this detection level. In particular, one cannot
model the ”average” group-wise deformation and its variabil-
ity, nor transport it back at the subject level to predict what will
be the future deformation. To reach such a generative model of
the longitudinal deformations, we should normalize the defor-
mations themselves and not just some of its components. This
involves defining a method of transport of the longitudinal de-
formation parameters along the inter-subject change of coordi-
nate system. It is important to recall here that the nature of the
longitudinal and inter-subject deformations could be very dif-
ferent, Thus, in terms of geometry, there is a-priori no reason
to consider the same geometric structure (connection or metric)
for both deformation spaces.

Depending on the considered parameterization of the trans-
formation (displacement fields, stationary velocity fields, ini-
tial momentum field...), different approaches have been pro-
posed in the literature. A simple method consists in consider-
ing the longitudinal transformation parameters as vectors fields
which are reoriented by the Jacobian matrix of the inter-subject
mapping. A clear drawback of this method is that it is only
valid for small longitudinal displacements and no consistency
can be expected along the temporal trajectory. A more elabo-
rated method consist in assuming that the longitudinal defor-
mation occurs in the subject specific coordinate system, and
that the inter-subject deformation is a (static) change of coor-
dinate system which is valid for all time frames. In that case,
the trajectory in the template space will be defined by the con-
jugate action φ̂i(x, t) = Ψ(−1)(φi(Ψi(x), t)). This transfor-
mation conjugation was used for instance in [15, 5]. In the
LDDMM framework, [17, 14] proposed to to parallel transport
the initial momentum of the longitudinal deformation along the
inter-subject geodesic diffeomorphism. The proposed method
is fully consistent with the chosen right-invariant metric on dif-
feomorphisms, but unfortunately requires that the same metric
is used for both longitudinal and inter-subject deformation.



In almost all cases, one can question the numerical stabil-
ity of the scheme and the consistency of the discrete encoding
of transformations with the composition of transformations. In
particular, the large inter-subject deformations may easily in-
duce large approximation errors on the transport of the small
longitudinal deformations.

2.1 Parallel transport using Schild’s ladder
Instead of defining properly the parallel transport in the con-
tinuous setting and approximating it in an inconsistent discrete
setting, we proposed in [11] to rely on a carefully designed dis-
crete construction that intrinsically respects all the symmetries
on the problem: the Schild’s Ladder procedure algorithm, ini-
tially introduced in the last century in the field of the general
relativity by the physicist Alfred Schild [6]. Maybe even more
importantly, this procedure allows to parallel transport vectors
along any curve and not just geodesics.

The method is based on the construction of a geodesic paral-
lelogram illustrated in Fig.1. To transport vector A at point P0

to point P1 along the curve elementC of length ε, we first build
a point P ′0 = expP0

(εA) in the direction of A. Then we com-
pute the midpoint P2 = expP ′

0
( 1
2 logP ′

0
(P1)) on the geodesic

from P ′0 to P1. The geodesic starting from P0 whose midpoint
is P2 is the second diagonal of the geodesic parallelogram and
defines the point P ′1 = exp(2 logP0

(P2)). The parallel trans-
port of vector A at point P1 is A′ = logP1

(P ′1). The whole
procedure is then iterated along the successive elements of the
curve to parallel transport a point along the whole curve.

FIG. 1: Right: The geodesic parallelogram forming each step
of the Schild’s Ladder. Left: the procedure is iterated along the
curve to constitute the steps of the ladder.

The Schild’s ladder procedure only requires the computa-
tion of (Riemannian) exponential and logarithms, and thus can
easily be implemented for any manifold provided that we have
these basic algorithmic bricks. In fact, one can show that the
procedure is valid for any affine connection space provided that
the connection is symmetric [8].

2.2 Implementation for SVFs acting on images
The Schild’s ladder procedure can be implemented particularly
simply in the framework of stationary velocity fields (SVF),
which generate one-parameter subgroups of transformations.
This infinite-dimensional analogous of the Log-Euclidean frame-
work for tensors and linear transformations was introduced in

[1] to parameterize diffeomorphic deformations as the flow a
stationary velocity field φ = Exp(u) (instead of a time-varying
one in LDDMM). A key point is that the scaling and squaring
algorithm allows computing the exponential in a logarithmic
time with respect to the number of time steps normally needed
to integrate the ODE. As the inverse deformation is parame-
terized by the opposite of the SVF, we can very easily enforce
inverse consistency. Moreover, the Baker-Campbell-Hausdorff
(BCH) formula gives a very efficient way to approximate the
composition of two deformations directly in the log-domain.

From the theoretical point of view, the SVF framework can
be justified by dropping the Riemannian metric for the more
general setting of affine connections. Indeed, there is a unique
symmetric connection which is both left and right invariant
on a Lie group: the canonical symmetric Cartan connection.
The geodesics of this connection are the left (and right) trans-
lates of the one parameter subgroups. Thus, SVFs are param-
eterizing the geodesics starting from identity. Notice that the
space is not flat with this connection as we have R(X,Y )Z =
−1/4[[X,Y ], Z] for any left invariant vector fields X,Y, Z.

Of course, the bi-invariance (which also implies the equivari-
ance by inversion) cannot be obtained for free. We loose in gen-
eral the property that any two points can be joined by a smooth
geodesic, which was automatically verified in Lie groups with
right invariant metrics (e.g. LDDMM). In infinite dimension,
the exponential maps might even not be locally diffeomorphic.
These points remain to be carefully investigated but in practice
the set of diffeomorphisms that are reachable by one parameter
subgroups seems to be sufficient large to encompass all reason-
able anatomical deformations.

Last but not least, we are interested here into deformation
of images. Thus, we should replace the points in our space
by images, and consider that the tangent vectors are the SVFs
that drive the deformation of the current image: expI(v) '
exp(u)?I . Likewise, the log of image J with respect to image I
is the SVF that best registers I to J . In this context, the Schild’s
ladder step transporting the SFV u at image I0 to the (template)
image T0 can be rewritten as follows (Fig. 2). First, we warp
Image I0 according to the SVF u to get I1 = Exp(u) ? I0.
Second, we register image I1 to image T0. The result is the
SFV v and the midpoint image would be I1/2 = Exp(v/2) ? I1
or symmetrically I1/2 = Exp(−v/2) ? T0. Finally, we get by
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FIG. 2: Schild’s Ladder parallelogram on one parameter
subgroups deformations acting on images. The transport
Exp (Π(u)) is ρ ◦ Exp(−v/2) = Exp(v/2) ◦ Exp(u) ◦
Exp(−v/2).



composition that I1/2 = ρ ? I0 with ρ = Exp(v/2) ◦ Exp(u)
and the point T1 is defined by T1 = ρ ◦ ρ ? I0 ' ρ ? I1/2 =
ρ ◦ Exp(−v/2) ? T0.

The formula Π(u) = Log (Exp(v/2) ◦ Exp(u) ◦ Exp(−v/2))
can be implemented either directly or using the BCH [11]:

Πconj(u) = D (Exp(v)) |Exp(−v) · u ◦ Exp(−v)

ΠBCH(u) = u+ [v, u] + 1/2[v, [v, u]]

3 Discussion
In [11], we showed that the proposed Schild’s Ladder algorithm
for SVFs overcomes other methods in terms of consistency
with respect to the resampling of most scalar measures of de-
formations (L2 norm, elastic energy, Jacobian, etc), see for in-
stance Fig.3. This opens the way to more stable and more pow-
erful group-wise statistics of longitudinal deformations. For in-
stance, we have shown in [10] that the mean temporal trajectory
of the brain in a group of healthy subjects which were Aβ42
positive (considered at risk for Alzheimer’s disease) was statis-
tically significantly different from the control group (including
an enlargement of the ventricles and a loss of matter in the hip-
pocampus area) while the same test on the local volume change
(the determinant of the longitudinal deformations) was not sta-
tistically significant. This result on prodromal Alzheimer’s dis-
ease illustrate the important gain in sensitivity that we could
obtain in deformation-based morphometry.
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