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Abstract – Plumb line lens distortion correction methods permit to avoid numerical compensation between the camera internal
and external parameters in global calibration method. Once the distortion has been corrected by a plumb line method, the camera
is ensured to transform, up to the distortion precision, 3D straight lines into 2D straight lines, and therefore becomes a pinhole
camera. This paper introduces a plumb line method for correcting and evaluating camera lens distortion with high precision.
The evaluation criterion is defined as the average standard deviation from straightness of a set of approximately equally spaced
straight strings photographed uniformly in all directions by the camera, so that their image crosses the whole camera field. The
method uses an easily built “calibration harp,” namely a frame on which strings have been tightly stretched to ensure a very high
physical straightness. Real experiments show that the correction precision also depends on the quality of strings. With good
quality fishing strings, our method produces high precision corrections (about 0.02 pixel), approximating the distortion with a
moderate number of degrees of freedom given by a polynomial model of order eleven.

1 Introduction

This paper presents a method to correct camera lens dis-
tortion with high precision. By high precision, we mean
deviations from straightness of less, or far less than 0.1
pixel for a straight line crossing the whole camera field.
Such a precision is hardly appreciable for a human ob-
server. However, there is no limit to the desired precision
when the camera is used for 3D reconstruction or pho-
togrammetry tasks. Traditionally, lens distortion and the
other camera parameters are estimated simultaneously as
camera internal and external parameters [1, 2, 3, 4, 5]. In
these global calibration methods all parameters are esti-
mated by minimizing the error between the camera and
its numerical model on feature points identified in several
views, all in a single non-linear optimization. The result
will be precise if (and only if) the model captures the cor-
rect physical properties of cameras and if the minimization
algorithm finds a global minimum. Unfortunately, global
camera calibration suffers a common drawback: errors in
the external and internal camera parameter can be com-
pensated by opposite errors in the distortion model. Thus
the residual error can be apparently small, while the dis-
tortion model is not precisely estimated [5, 6]. For exam-
ple, the Lavest et al. method [4] measures the non-flatness
of a pattern and yields a remarkably small re-projection
error of about 0.02 pixels, while the straightness of cor-
rected lines has a 0.2 pixel RMSE. Fortunately the error
compensation in global calibration can be avoided by pro-
ceeding to distortion correction before camera calibration.
Recent distortion correction methods use the correspon-

dences between two or several images, without knowledge
of any camera information. The tool of slackened epipolar
constraints, which incorporate a simple low-order distor-
tion model into the epipolar geometry, is used to estimate
the distortion [7, 8, 9, 10, 11, 6, 12].

Non-parametric methods which establish a direct diffeo-
morphism between a flat pattern and a frontal photograph
of it [13, 14] should be ideal for high precision distortion
correction. Indeed, they do not depend on the a priori
choice of a distortion model with a fixed number of pa-
rameters. Yet to achieve a high precision, they depend
on the design of a very flat non deformable plate with
highly accurate patterns printed on it.1 This replaces a
technological challenge by another, which is not simpler.
Plumb-line methods [15] should therefore be an alternative
because, as we shall see, it is easier to create very straight
lines, even though the precision of distortion correction
also depends on the quality of lines, as we will see in the
experiments. For plumb-line methods, a distortion model
is still necessary to precisely remove the distortion, and
most existing models can be used. Nevertheless, some of
them are too complicated [15], while some are not general
enough to capture the distortion [16]. For most distor-
tion models, the distortion center is a sensitive parameter
when a realistic distortion is treated. The barely poly-
nomial approximation proposed in [17] is therefore a good
choice, being a translation invariant and linear approxima-
tion of any vector field. This model-free formulation can

1A 10 µm flatness could be needed to achieve a precision of 0.01
pixels.



approximate complex radial and non-radial distortions as
well, provided the polynomial degree is high enough. Ac-
cording to the criteria of self-consistency and universal-
ity2 developed in [17] to compare many camera distortion
models, the polynomial models are the most flexible and
accurate.

The proposed method is introduced in section 2, fol-
lowed by real experiments in section 3, along with a com-
parison to a non-parametric method. Section 4 concludes
the paper.

2 The harp calibration method

In one sentence, the proposed method combines the ad-
vantage of plumb-line methods with the universality of the
polynomial approximation. The plumb-line method con-
sists in correcting the distorted points which are supposed
to be on a straight line, by minimizing the average squared
distance from the corrected points to their corresponding
regression lines.

The polynomial model has the form
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with (xu, yu) undistorted point and (xd, yd) distorted point.
The polynomial approximation being translation invari-
ant, the origin is arbitrarily fixed at the image center.
The order for the x and y components is respectively p
and q. The number of parameters for x and y is respec-
tively (p+1)(p+2)

2 and (q+1)(q+2)
2 . The model is called bicu-

bic model when p = q = 3.
In the following, we show how to integrate the polyno-

mial model into the plumb-line method. Given a set of
corrected points (xui

, yui
)i=1,··· ,N which are supposed to

be on a line, the first step is to compute the linear regres-
sion line

αxui
+ βyui

− γ = 0 (2)

where α, β and γ can be parameterized by the coefficients
of the polynomial model. The sum of squared distances

2Self-consistency is evaluated by the residual error when distor-
tion generated with a certain model is corrected (using the model
in reverse way) by the best parameters for the same model. Analo-
gously, universality is measured by the residual error when a model
is used to correct distortions generated by a family of other models.
A model is self-consistent and universal if it can approximate any
other model and the inverse of any other model, including itself,
with the desired precision. As shown in [17], polynomials of order
11 are 0.01 pixels self-consistent and universal.

from the points to this regression line can be computed
as
∑N

i=1 (αxui
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− γ)2. By considering G groups of
lines, the total sum of squared distance is
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with Lg the number of lines in group g, and Ngl the num-
ber of points of line l in group g. Given the total number
of points N =

∑G
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∑Lg

l=1Ngl, the root mean squared
distance (RMS error) is defined by
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For a sake of succinctness, the following discussion will
assume a bicubic model with p = q = 3. Combining
Eq. (1) and Eq. (3), the energy S becomes
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The minimization of the energy in Eq. (5) is a non-linear
problem with respect to the parameters b0, . . . , b9, c0, . . . , c9.
The problem becomes linear when the orientation param-
eters αg, βg are known. In practice, however, the orienta-
tion of lines is unknown.

To obtain a unique non-trivial solution, we always set
b7 = c8 = 1, b9 = c9 = 0 (when p = q = 3), which
in fact fixes a scale and a translation to the solution.
The minimized S can be changed by the introduced scale.
But this change is consistent if the distortion center and
b9, c9, b7, c8 are fixed. The minimization is performed by
first doing an iterative Levenberg-Marquardt (LM) algo-
rithm which estimates the parameters of polynomials of
increasing order. The algorithm starts estimating the pa-
rameters of a 3-order polynomial; the result is used to ini-
tialize the 4-order polynomial, and the process continues
until 11-order. After this first step, the linear estimation
is performed iteratively to refine the precision. The line
orientations are first initialized by the orientation of the
regression lines obtained by the LM method, and then
with the values of the previous linear step. The iteration
is repeated until the results stabilize or the required pre-
cision is reached. An example of error evolution in the
minimization process is shown in Table 1.

3 Experiments

In this section, we describe real experiments with a strong
distortion comparing the performance of the proposed method
with a harp made up of sewing strings and a harp made
up of fishing strings.

The experiments were made with a Canon EOS 30D
reflex camera with EFS 18 − 55mm lens. The minimal



Fig. 1: Six of the 18 photos of the fishing string calibration
harp with different orientation. The photos of the sewing
string calibration harp look similar. See the detail of the
string in Fig 2.

Fig. 2: A detail of the string. Left: sewing string. Right:
fishing string.

Fig. 3: Correction performance of the proposed method
with a sewing string harp. An independent image not
used in the polynomial model estimation was used here
to measure the correction precision. The curve shows the
distance from the edge point of the corrected lines to their
corresponding regression line. Note that each figure con-
tains two curves because there are two lines for one string.
The x-axis is the index of edge points. The range of y-axis
is from −0.3 pixels to 0.3 pixels.

Fig. 4: Correction performance of the proposed method
with a fishing string harp. See the caption of Fig. 3 for
details.

focal length (18mm) was chosen to produce a fairly large
distortion. The RAW images were demosaicked by sum-
ming up the four pixels of each 2× 2 Bayer cell, obtaining
a half-size image. Two calibration harps were built: one
was made up of sewing strings and the other fishing strings
(see the detail of the strings in Fig. 2). Both strings were
stretched tightly to ensure a very high physical straight-
ness. A high distortion is visible near the border of the
image (see the images in Fig. 1 for example). The same ex-
periment was repeated with two harps: 18 photographs of
the calibration harp with different orientations were used
in the calibration by the 11-degree polynomial model (a 5-
order polynomial model can be used to accelerate the min-
imization process according to Table 1). An independent
distorted image is used for verification. The lines were
detected as follows: sub-pixel precise edge points were
obtained by Devernay’s algorithm [18] and then grouped
when belonging to the same line segments detected by the
LSD algorithm [19].

The correction result of the sewing string harp and the
fishing string harp is recapitulated in Fig. 3 and 4 respec-
tively. Note that in both figures, the y-axis has the same
range, from −0.3 pixels to 0.3 pixels. As shown in both
figures, the distortion correction is so accurate that no
visible global tendency is visible in the corrected curves.
The result of the sewing string harp is more oscillating
than that of the fishing string harp. This is in fact due to
the quality of strings. Indeed, the observed oscillation in-
herits the high frequency of the distorted lines, while lens
distortion alters only the low frequency of the distorted
lines. In Fig. 2, the sewing string has a twisted structure
while the fishing string is more smooth. The oscillation
in Fig. 3 is due to a variation of the thickness related to
the twisted structure of the sewing string. The result in
Fig. 4 shows smaller oscillation thanks to the smoothness



of the fishing string.

minimization RMSE (in pixels)
sewing string harp fishing string harp

LM order

3 0.42 0.46
4 0.42 0.45
5 0.08 0.06
6 0.08 0.05
7 0.07 0.04
8 0.07 0.04
9 0.06 0.04
10 0.06 0.04
11 0.06 0.04

linear step 0.04 0.03

Tab. 1: The average RMSE evolution in the minimization
process. The minimization is composed of an incremental
LM algorithm from order 3 to 11, followed by a linear
minimization.

4 Conclusion

By combining the advantages of a model-free polynomial
approximation and of a real plumb line pattern, the pro-
posed lens distortion correction achieves precisions of about
0.02 pixels. The “calibration harp” construction only re-
quires the acquisition of a string with decent quality. It is
far simpler than realizing a flat plate with highly accurate
patterns engraved on it. (The calibration of such patterns
is not easier than lens calibration itself!) The high number
of degrees of freedom in the unstructured model explains
why we can call the method model-free. The only as-
sumption on the lens distortion is its smoothness, implying
that a polynomial with high enough order approximates
it. In our experiments, the approximation error stabilizes
for polynomials of degree 7 to 11. It might be objected
that the high number of parameters in the polynomial in-
terpolation (156 for an 11-order polynomial) could cause
some bias in the result. Yet, the number of control points
is far higher: There were about 10 strings for each ori-
entation, some 30 control points on each string side, and
some 18 orientations. Thus the number of control points is
about 10000 and therefore 60 times more than the num-
ber of polynomial coefficients. A visual examination of
the two sides of the strings confirms that no artificial si-
multaneous bias has been introduced by the polynomial
distortion correction. Another interesting observation is
that the correction only changes the low frequency of dis-
torted lines. The high frequency, which is related to the
quality of strings, will be inherited by the corrected lines.
This motivated us to use the fishing string to fabricate the
calibration harp, which produces a correction result more
precise than the sewing string harp. Future work will con-
centrate on the precision of external camera calibration,
and eventually on the 3D precision after having removed
the lens distortion by the present method.
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