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1Université de Lorraine, CRAN, UMR 7039, 2 avenue de la Forêt de Haye, 54516 Vandœuvre-lès-Nancy cedex, France
2CNRS, CRAN, UMR 7039, 54516 Vandœuvre-lès-Nancy, France

{sharib.ali, walter.blondel, christian.daul}@univ-lorraine.fr

Résumé – L’augmentation du champ de vue par mosaı̈quage d’images facilite le diagnostic et le suivi de lésions vues dans une séquence
cystoscopique. Alors que les méthodes de flot optique ont été utilisées pour des scènes très différentes, elles ont rarement été testées sur des images
endoscopiques pauvres en textures et floutées. Dans cette contribution est présentée une méthode variationnelle totale (TV-L1) d’estimation de
flot optique pour ce type d’images. Cet algorithme est comparé à d’autres méthodes de flot optique à l’aide d’images reproduisant de façon très
réaliste des données patient. Cette comparaison, ainsi que des résultats obtenus pour des données cliniques, mettent en lumière l’avantage de la
méthode TV-L1 en termes de précision, de robustesse et de vitesse de recalage d’images.

Abstract – Image mosaicing helps in diagnosis and follow-up of lesions in cystoscopic bladder image sequences by increasing the field of view.
Optical flow methods have been used for various scenes, whereas they were barely experimented for data with poor texture and blurry images
like that of endoscopic data. In this paper, we present the use of total variational optical flow method (TV-L1) for such high texture variability
and blur. This method is compared to other optical flow methods on phantom images simulating realistic patient data. This comparison and the
result on patient data show the advantage of the TV-L1 method over the other methods in terms of registration accuracy, robustness and time.

1 Introduction
Cystoscopy is the standard clinical examination allowing the
urologist for searching lesions on the bladder internal wall and
assessing their evolution. The small field of view (FOV) of
the video-sequence images complicates lesion diagnosis and
follow-up. Increasing the FOV by computing two-dimensional
(2D) panoramic images (see fig. 2(d)) helps urologists to ana-
lyse the state of the overall surface of the bladder. The mo-
saicing process registers consecutive images Ii+1 (source) and
Ii (target) and places them in a common coordinate system
(usually that of the first image I0). It was shown that both
in the white light (WL) modality [1, 2] and in the fluores-
cence modality [3] a perspective transformation is an appro-
priate model to register bladder images. In Eq. (1), Ti,i+1 has to
be computed so that it superimposes homologous pixels pi+1 =
(xi+1, yi+1)T of Ii+1 and pi = (xi, yi)

T of Ii. The parame-
ters f , φ, (sx, sy), (tx, ty) and {h1, h2} denote the scale fac-
tor, in-plane rotation, shearing, 2D translation and perspective
changes respectively. The value of parameter α is entirely defi-
ned by the perspective parameters h1 and h2.αxiαyi
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Feature descriptors computed for strong texture points can
be used in the fluorescence modality to register bladder images
[3]. However, in the standard WL modality, such an approach
fails due to the strong intra- and inter-patient texture variability
and/or due to the lack of texture. To solve this problem, some

authors used only iconic data to register the images by either
maximizing the grey-level mutual information [1] or by using
graph-cut techniques for minimizing the color differences of
the superimposed pixels [2]. These methods are robust and ac-
curate but very slow.

For many scenes, differential methods are often the best com-
promise in terms of registration accuracy and speed. This was
also shown in [4] for bladder images in the WL modality. Two
techniques exist depending on local or global energy minimiza-
tion scheme. Local methods [5] are based on brightness consis-
tency assumption in a given neighborhood of the pixels and are
robust against noise. But, such methods lead to rank deficient
matrices during optical flow calculations in homogeneous or
low texture regions that often arise in cystoscopic image se-
quences. In contrary, global methods propagate the optical flow
field from image regions with rich textures to image regions
with poor textures. It guarantees a dense flow field since the
whole image data is used. It consists of a data term and a re-
gularization term. The optical flow calculation model proposed
by Horn and Schunck [6] can be formulated as,

min
(u,v)
{
∫

Ω

(Ix.u+ Iy.v + It)
2︸ ︷︷ ︸

data term

+λ2

∫
Ω

‖ u ‖2 + ‖ v ‖2︸ ︷︷ ︸
smoothness term

}, (2)

where (Ix, Iy) are image derivatives and (u, v) are flow vec-
tors w.r.t. x and y image axes respectively. It is the grey-level
difference of the consecutive image pairs. λ defines the trade–
off between the smoothness (regularization) and the data term.

The major drawback of this method is that, due to the regu-
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FIGURE 1 – Middlebury dataset for optical flow [8] is used
for TV-L1 optical flow method evaluation (a-e). TV-L1 prac-
ticed on real cystoscopic data (f-g). The experiments were
run for 7 warps using 150 iterations at each warp in a multi-
resolution approach. λ was set to 30. a) Dimetrodon sequence.
b) Ground Truth. c) Flow color-code representing the flow vec-
tors in pixels. d) TV-L1 without illumination term (i.e.γ = 0).
d) TV-L1 with (γ = 0.02) in the illumination term. e) Cysto-
scopic image. f) Flow plot using the flow color code with illu-
mination term (γ = 0.02). g) Correspondences obtained from
the flow vectors after RANSAC[9]. Red circles and + symbol
in green represent the set of correspondence matches.

larization term , it penalizes high gradients of u and v resulting
in over–smoothing effect. To overcome this problem, variatio-
nal method with L1-norm was proposed and solved by using
duality approach for faster convergence of the flow field [7]. In
this paper, it is shown that the total variational method is ro-
bust for the cystoscopic images and hence can be used for fast,
accurate and robust mosaicing of the bladder scene. In section
2, TV-L1 method is explained with reference to middlebury
optical flow dataset [8] and application on cystoscopic image
sequence is shown. Section 3 deals with stitching of the images
with the obtained local homographies. Section 4 presents the
result of this method and compares it with the other existing
optical flow methods using a dataset with known ground truth
transformations.

2 TV–L1 optical flow
The TV–L1 optical flow estimation model is based on minimi-
zing the function containing a data term using the L1-norm and

a regularization term using the total variation for the flow cal-
culations. The major advantage of this method is that it allows
discontinuities in the flow field and is less sensitive to homolo-
gous pixel intensity variations between images. Let u = {u, v}
be the 2D displacement field at pixel coordinate x = {x, y}.
The optical flow problem problem linearized using Taylor’s ex-
pansion and with an additional function w for varying illumi-
nation (refer [7]) can be modeled as,

ρ(u) = ∇Ii+1(x+u0).(u−u0)+ Ii+1(x + u0)− Ii(x)+γw, (3)

where Ii+1 and Ii are the two consecutive source and target
images respectively, u0 a close approximation to u and γ is the
weight. The L1 penalization for both the regularization term
and the data term can be understood as the minimization of the
following energy function :

E = min
(u,v)
{λ

∫
Ω

‖ ρ(u, v) ‖1 +

∫
Ω

‖ u ‖1 + ‖ v ‖1}, (4)

where λ gives the trade-off between data term and regulariza-
tion term. A convex relaxation term is introduced to find the
global minimum solution of the non-trivial Eq. (4) as,

E = min
(u,p)
{λ

∫
Ω

ρ(p) +
∫

Ω

‖ u ‖ + ‖ v ‖ + 1

2θ
‖u− p‖2}, (5)

where p be another auxiliary variable as u and θ be a small
constant forcing to minimize the function.

Total variational (L1 − norm) method using traditional op-
tical flow constraint without illumination term γw in Eq. 3 was
used in [10] for CT-lung and brain MRI image registration.
Our experiments with the publicaly available “dimetrodon” se-
quence in Middlebury dataset [8] showed improved flow accu-
racy and faster convergence with the illumination term in Eq.
(3) as shown in Fig.1(a-e). Experiments with the clinical data
shown in Fig.1(f-h) also shows the efficiency of this algorithm.
Geometrically consistent features were extracted from the cal-
culated flow vectors. A multi-resolution approach was used for
the experiments. The flow vectors were used to formulate the
feature matches between the image pairs (xi+1 ' xi + u,
yi+1 ' yi + v). The matched features were used to compute
the perspective transformation matrix Ti,i+1 with an over de-
termined system.

3 Homography Estimation
A set of local homographies T 2D

i,i+1 were obtained as explai-
ned in [11] from the matched features between the consecu-
tive image pairs. The first image was defined as the reference
frame I0. The global transformation T 2D

0,i established from lo-
cal transformations as in Eq. (6) was used to build the mosaiced
images shown in Figs. 2(d), 3 and 4 by placing Ii in the coor-
dinate system of I0.

T 2D
0,i =

k=i−1∏
k=0

Ti−k−1,i−k. (6)
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FIGURE 2 – Dense feature extraction using the total variational method with L1 − norm. a) Cystoscopic image pair (Ii, Ii+1)
with texture variability and blur. There is less texture in the bottom of the image than around the image center. b) Flow field
representation using the color code given Fig.1(c). c) Geometrically consistent dense feature matches (yellow vectors) established
from the flow vectors for the image pair of (a). d) Mosaicing obtained from a patient bladder video-sequence. The mosaic center
is less textured than the remaining panoramic image parts.

4 Experimental Results
An image pair with varying texture, illumination and deforma-
tion is shown in Fig.2 (a). A flow field is computed using the
method explained in section 2. Fig. 1(c) shows the dense cor-
respondence established after removal of geometrically incon-
sistent flow. A video sequence with 250 similar images where
selected to get a mosaic shown in Fig. 2 (d). In this section, we
have presented and discussed the method used and compare it
with some existing optical flow methods in the literature using
the dataset explained below.

Dataset : A pig bladder (having very similar texture to the
human bladder for urologist) was first excised, opened and then
a high resolution image was acquired. A sub-image I0 was cho-
sen as a reference coordinate and 49 sub-images with known
transformations T true

i,i+1 were computed. Thus, a realistic cys-
toscopic medical examination was simulated with both blurry
and poor texture conditions along with strong displacements of
about 50 pixels and a strong perspective change. The mean re-
gistration error ε̄ obtained from registration error between the
consecutive image pairs εi,i+1 is calculated as :

ε̄ =

i=49∑
i=0

εi,i+1

50
,with εi,i+1 =

1

| Ii |
∑
p∈Ii

‖ T true
i,i+1p− T est

i,i+1p ‖ . (7)

FIGURE 3 – Phantom bladder mosaicing using TV-L1 method.
The quadrangles represent the images and black line presents
trajectory of the simulated video-sequence.

Eq. (7) places the pixels p from image Ii+1 into the coordi-
nate system of image Ii using both the estimated homography
T est
i,i+1 and ground truth values T true

i,i+1. This error determined
for | Ii | number of points is ideally null for each Ii, Ii+1 pair.

Method comparison : Baker and Mathews method gave a
mean registration error (ε̄) of nearly 6 pixels. Global methods
like Horn-Schunck method and Brox et. al. were not robust
(registration failed for some images) and their accuracy was
highly dependent on weighing parameters when the registra-
tion was possible. The over–smoothing of the flow vectors were
persistent in most of the image pairs giving high mean registra-
tion error of nearly 20 pixels. TV-L1 method with a function
able to handle illumination changes as explained in section 2
gave robust, fast and accurate registration of the image pairs
under different conditions of both texture and illumination. An
ε̄ of 1.2 pixels was achieved with relatively far less computa-
tional time (8s) than the methods in comparison (refer Table.
1). The experiment was run for 3 warps and 150 iterations at
each warp in multi-resolution approach. λ was set to 50 and γ
as 0.01. A complete mosaic of the phantom image using TV-
L1 method is shown in Fig. 3. A visually coherent mosaic was
built by minimizing texture discontinuities and color gradients
with the method described in [12].

TABLE 1 – Method comparison. ε̄ and t̄ are mean values com-
puted for the phantom data of Fig. 3. All algorithms were im-
plemented in MATLAB and tested on a 2.7 GHz i7 processor.

Method ε̄ (in pixels) t̄ (in s)
Baker and Mathews [13] 6.2 60
Horn-Schunck [6] 17 30
Brox et. al. [14] 20 40
TV-L1 [7] 1.2 8

5 Conclusion

Cystoscopic sequences under white light modality have strong
intra- and inter- patient texture variability, illumination changes
and blur which makes the registration more challenging than



FIGURE 4 – TV-L1 method used for mosaicing 500 images of
a cystoscopic real patient data. The black dashed line defines
the endoscope trajectory with an arrow pointing the direction
of the loop completion.

the classical scenes usually employed to test optical flow me-
thods. We experimentally verified that in presence of such high
texture variability and illumination changes, some existing op-
tical flow methods failed to register the image pairs robustly
and accurately while total variational method was adapted to
give robust and accurate registration of consecutive image pairs
(Ii, Ii+1) for panorama building from such sequence.
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