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Résumé – L’arbre de branchement d’un signal a été récemment utilisé pour réaliser la synthèse de processus fractals et multifractals. L’objet
de cet article est de le considérer comme un outil d’analyse. Etant confronté à un signal a priori multifractal, son arbre de branchement est
déterminé, et les caractéristiques de l’arbre sont utilisées pour estimer le spectre multifractal du signal. Précisément, à une profondeur donnée,
une fonction de partition résumant les statistiques des durées entre branchement est calculée. Pour certaines classes de processus, cette fonction
de partition est une loi de puissance de la résolution d’analyse, dont l’exposant est relié au spectre multifractal. Nous illustrons cette approche
sur divers signaux dont le spectre est connu théoriquement.

Abstract – The crossing tree of a signal has been recently used to construct monofractal and multifractal processes. In this paper, we use the
crossing tree of a signal for the purpose of analysis. Given a realisation of a signal, its crossing tree is calculated, whose characteristics are
used to estimate the multifractal spectrum. More precisely, a partition function is evaluated at each resolution to sum up the statistics of the
crossing durations. For multifractal signals, the partition function is a power law of the resolution, whose exponent is linked to the spectrum.
We illustrate numerically this approach for several classes of multifractal signals, including multiplicative cascades, fractional Brownian motion,
and the Weierstrass function.

1 Motivation
Scale invariance and multifractal theory have been widely used over
the past twenty years to analyse and describe data collected in a broad
range of fields, including the study of natural phenomena in physics
(in particular hydrodynamic turbulence), in computer network traffic,
in financial markets for modelling volatility, but also in signal and
image processing, to cite but a few.

Estimation of the multifractal spectrum of a signalX typically hap-
pens in the context of the so-called “multifractal formalism”. Let
TX(a, t) summarize the spatial displacement of X at time t and at
a temporal scale a. It is obtained from a comparison of the original
process with a reference pattern ψ dilated and located at different po-
sitions,

TX(a, t) = a−1

∫
X(u)ψ((u− t)/a)du .

The processX is said to possess scaling properties if the time averages
of TX(a, tk) follow a power law behaviour with respect to a,

N−1
a

Na∑
k=1

|TX(a, tk)|θ ∼ Cθaζ(θ) as a→ 0 ,

whereNa is the number of TX(a, tk) available at scale a. Here ζ(θ) is
the partition function. In practice scaling properties are only observed
for a limited range of scales and a limited range of θ. The choice
of ψ plays a central role in the estimation of the partition function.
Multiresolution quantities based on a wavelet decomposition of the

∗P.O.A. est soutenu par une bourse Marie Curie International Outgoing Fel-
lowship de l’Union Européenne.

process are the most common tool to date. For example when wavelet
leaders are used we have that, for some processes at least, the set of
points with Hölder exponent α has Hausdorff dimensionD(α) = 1+
infθ(θα−ζ(θ)) = 1+ζ∗(α), where ζ∗ denotes the Legendre-Fenchel
transform of ζ, see [8]. More generally the RHS provides an upper
bound on the multifractal spectrum. If we can write the multifractal
spectrum in terms of the Legendre-Fenchel transform of ζ like this,
then we say that the multifractal formalism holds. In the present study
we introduce a novel set of multiresolution quantities, defined in terms
of the crossing tree, which in our context can be viewed as a path-
adapted multiresolution decomposition of the process.

The crossing tree is a very general concept. In [11, 12] it was ap-
plied to self-similar processes, to test for self-similarity and stationary
increments, and to obtain an asymptotically consistent estimator of the
Hurst index, which was shown to be an improvement on existing es-
timators in certain circumstances. In [1] the crossing tree was used to
estimate a time-change of a self-similar process, and more generally in
[10], was used to characterise and test if a process is a continuous lo-
cal martingale. In [9, 3, 4, 5, 6] it was used to construct processes with
scaling properties (monofractal and multifractal). The work described
here is a first attempt to use the crossing tree as an analysis tool for
multifractal processes and measures. The multiresolution quantities
defined from the crossing tree are used to construct a new partition
function, called the crossing-tree partition function, and to introduce
a new multifractal formalism. In particular, we show that for a class
of processes including multiplicative cascades, and for processes ob-
tained as a time-change of a process of constant modulus of continuity,
the Hausdorff spectrum can be written in terms of a transform of the
crossing-tree partition function. In this case, the new multifractal for-
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FIG. 1: Formation of the crossing tree from a sample path, and
crossing tree notation. Variables are defined in the text.

malism is said to hold.

In Section 2 we define the crossing tree of a signal, we introduce
the crossing-tree partition function and we describe the multifractal
formalism. Section 3 illustrates numerically the formalism introduced
in Section 2 for multiplicative cascades, fractional Brownian motion
and the Weierstrass function.

2 The crossing tree partition function
We describe the crossing tree in the context of multifractal processes.
Let X : R+ → R be a (multifractal) process, with a.s. continu-
ous sample paths and X(0) = 0. For m ∈ Z we define level-
m crossing times Tmk by putting Tm0 = 0 and Tmk+1 = inf{t >
Tmk | X(t) ∈ 2mZ, X(t) 6= X(Tmk )}, where 2mZ = {x | x =
2ma for a ∈ Z}. The k-th level-m (equivalently scale 2m) crossing
Cmk := {(t,X(t)) | Tmk−1 6 t < Tmk } is the bit of sample path from
Tmk−1 to Tmk . There is a natural tree structure to the crossings, as each
crossing of size 2m can be decomposed into a sequence of crossings
of size 2m−1. The nodes of the crossing tree are crossings and the off-
spring of any given crossing are the corresponding set of subcrossings
at the level below. An example of a crossing tree is given in Figure 1.

It is convenient to use the address space I = ∪∞k=0Nk, where Nk
is the set of concatenations of k integers and N0 = ∅, to label the
crossings of the process. For simplicity we will consider the first
crossing from 0 to ±1 and make this the root of our crossing tree.
Label the root crossing ∅ and its subcrossings (each of size 1/2) 1 to
Z∅. The subcrossings of a crossing i = i1i2 · · · in ∈ Nn are then
labelled i1, . . . , iZi, where Zi is the number of subcrossings of i and
ij = i1i2 · · · inj. Necessarily Zi is an even integer larger or equal to
2. Denote by Nn the size of generation n. Each crossing i is one of
two types, up or down, which we denote by σi. Also let Wi be the
duration of crossing i, then the sample path is completely described
by {(σi,Wi) : i ∈ I}. Crossing-tree notation is summarized in Fig-
ure 1.

Let i ∈ N∞ be such that for each n, the size 2−n crossing that
contains t is i|n, where i|n is i truncated to n places. Let Ti|n be the
start time of crossing i|n, then Ti|n → t as n → ∞, so formally we
have

|X(t+Wi|n)−X(t)| ≈ 2−n =W
−n log 2/ logWi|n
i|n .

T (a, t) = X(t+ a)−X(t)

Wi|n

2n

t t+ a

FIG. 2: Illustration of the difference between wavelet and
crossing tree approaches for analysing a signal. For wavelets,
local fluctuations are studied from a time decomposition, as
a → 0. For the crossing tree, the local behaviour is studied
from a space decomposition, as 2n → 0.

Thus (when everything works, for example for the Brownian motion,
or more generally, for Canonical Embedded Branching Processes, see
[6]) we get that α(t) = limn→∞−n log 2/ logWi|n, where

α(t) = lim inf
ε→0

1

log ε
log sup
|u−t|<ε

|X(u)−X(t)|

is the Hölder exponent of the process at time t. This equation gives
the fundamental relationship between the multifractal spectrum and
the crossing tree.

Given t, let i ∈ N∞ be such that for each n, the size 2−n crossing
that contains t is i|n. Then, our analogue of the multiresolution quan-
tity TX(2−n, t) is just Wi|n. As before, we say that the process X
possesses scaling properties if time averages of the crossing durations
follow a power law behaviour. That is,

S(n, θ) =
1

Nn

∑
i|n

|Wi|n|θ ∼ C′θ2−nζ1(θ) , (1)

as n→∞, where the sum is taken over all crossings of size 2−n. We
call S(n, θ) the structure function and ζ1 the crossing tree partition
function. The partition function can be obtained from the structure
function as a limit,

ζ1(θ) = lim inf
n→∞

logS(n, θ)

−n log 2 . (2)

The difference between partition function (2) and wavelet-based parti-
tion functions, is that it relies on an adaptive decomposition of the sig-
nal: classic methods rely on a time decomposition of the signal (usu-
ally using wavelets) whereas the proposed method relies on a space
decomposition of the signal. This is illustrated in Figure 2.

Motivation for defining the crossing tree partition function (2)
comes from the so-called Multifractal Embedded Branching Processes
(MEBP), see [5]. MEBP constitute a large class of multifractal pro-
cesses, which include random m-ary cascades and a class of time-
changed Brownian motions. An MEBP process X can be represented
as the composition of a process Y with constant modulus of continu-
ity HY , and the inverse of an increasing process M, so that it can
be written as X = Y ◦ M−1. The increasing process M is the
integral of a multiplicative cascade defined on the boundary of the
crossing tree of Y , where the weights of the multiplicative cascade
are assumed to be i.i.d. The crossing tree of Y is such that the Zi are
mutually independent and identically distributed, with mean µ. Then



HY = log 2/ logµ, see [6], and

HY = log 2/ log

 lim
n→∞

N−1
n

∑
i|n

Zi|n

 ,

assuming the limit exists. It turns out that HY ζ1 is a natural partition
function for M (since it is needed to divide logS(n, θ) by logµ in
(2) instead of log 2, see [4]), that the multifractal formalism holds for
M, see [7], and thus thatM has multifractal spectrum

DM(α) = 1 + inf
θ
(αθ −HY ζ1(θ))

= 1 +HY inf
θ
(αθ/HY − ζ1(θ))

= 1 +HY ζ
∗
1 (α/HY ) . (3)

On the other hand, the spectrum ofM−1 is given by DM−1(α) =
αDM(1/α), see [13, 14]. Composition with a process of constant
modulus of continuity HY transforms the spectrum as follows

DX(α) = DM−1(α/HY ) = αH−1
Y + αζ∗1 (1/α) . (4)

Relation (4) constitutes the starting point of our multifractal analy-
sis: it provides the exact expression of the Hausdorff spectrum of
processes which can be written as the composition of a process with
constant modulus of continuity and a multifractal time-change defined
on its crossing tree. In a practical situation, we assume that the pro-
cess under study belongs to this class, and we apply the methodology
described.

3 Numerical study
We illustrate the methodology on two multifractal binary cascades,
and on two monofractal processes: the fractional Brownian motion
(fBm) and the Weierstrass function. The partition functions are es-
timated from an average of 1000 Monte-Carlo simulations, and er-
rorbars correspond to plus and minus two standard deviations. Time
series are of length 218. In each case, the partition function ζ1(θ)
is estimated from a linear regression of log2 S(n, θ) versus n. The
range of scales for which the behaviour is linear is determined manu-
ally. This is illustrated in Figure 3. For all the simulations, the θ range
is -10 to 10, even if such high exponents lead to poor estimation given
the size of the signal considered.

Deterministic Cascade. The crossing tree of the binary cascade
has exactly µ = 2 offsprings at each node, giving HY = 1. The
MEBP process reduces to X = Y ◦ M−1 = M−1, since in the
previous notation, the process Y corresponds to a single crossing from
0 to 1. By taking deterministic weightsW0 = 0.25 andW1 = 1−W0,
the crossing-tree partition function becomes

ζ1(θ) = 1− log2(W
θ
0 +W θ

1 ) , (5)

and is plotted on top left corner of Figure 4 (plain line), together with
the crossing tree partition function (2), estimated over a range of scales
from 2−1 to 2−16. The estimated ζ1 matches perfectly the true one.
From (3), as HY = 1, the Legendre transform of ζ1(θ) gives the
Hausdorff spectrumDM(α) = 1+ζ∗1 (α) ofM, and that ζ1 coincides
with wavelet-based partition function in this case.

Random Cascade. Take i.i.d. log normally distributed weightsW ,
such that log |W | has mean µ and variance σ2, so that the crossing-
tree partition function is given by

ζ1(θ) = −
σ2

2 log 2
θ2 − µ

log 2
θ . (6)
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FIG. 3: Structure function in log-log plot, corresponding to one
realisation of an fBm of length 218, for θ varying from −6 to
6 (from top to bottom), and n from 1 to 10. The crossing-tree
partition function ζ1(θ) is estimated from a linear regression of
log2 S(n, θ) versus n, for n between 2 and 6.

The smallest αm and largest αM Hölder exponents are
±σ(2/ log 2)1/2 − µ/ log 2, see [2]. We take µ = −0.6 log(2)
and σ2 = 0.05 log(2), which yields αm = 0.28 and αM = 0.91,
corresponding to a rough process. The top right panel of Figure 4
presents ζ1 (plain line), whose expression is given in (6), together
with the estimated one using the crossing tree partition function (2),
where estimation is made across scales 2−1 to 2−12. There is a very
good match between the two curves.

fBm. Consider now an fBm with H = 0.7. The analysis is per-
formed across scales from 2−2 to 2−6. Results are presented in the
bottom left panel of Figure 4. It is linear, as we would expect for
monofractal processes, indicating that the method based on the cross-
ing tree gives estimation consistent with the theory. The slope of the
solid black line is 1/H , where H = 0.7 is the Hölder exponent of
the fBm. A linear regression of the estimated partition function ver-
sus q, gives an average estimate of Ĥ = 0.714, with 95% confidence
interval [0.695, 0.734]. Equation (4) then yields D(α = H) = 1,
D(α 6= H) = −∞, as expected.

Weierstrass function. We finally apply the method to the Weier-
strass function, known to be a monofractal. It is defined as

f(t) =
∑
k∈Z

λ−kH0

(
cos(2πϕk)− cos(2πλk0t+ ϕk)

)
where H stands for the Hölder exponent and λ0 is a fundamental har-
monic. We consider here a random version of the function, obtained
by choosing the phases {ϕk}k∈Z as a sequence of i.i.d. variables uni-
formly distributed over [0, 2π]. Note that the definition is made to
impose f(0) = 0. We applied the crossing tree decomposition to the
function for H = 0.55, λ0 = 1.2 (for a sampling frequency assumed
to be 1). We represent the estimated ζ1(θ) in the bottom right corner
of Figure 4, for a range of scales from 2−3 to 2−6. The slope of the
solid black line is 1/H , where H = 0.55. The average estimate of H
is Ĥ = 0.560, and a 95% confidence interval forH is [0.527, 0.593].
Here as well, the partition function is linear, consistent with the theory.

Discussion. Both for the fbm and the Weierstrass function, the
slope of the estimated partition function is 1/H , and not H , as one
would expect from methods relying on wavelets. We conjecture that
for a monofractal process, the crossing-tree partition function is

ζ1(θ) = θ/H.



From (4), this is true for monofractal MEBP processes, and maybe
holds as well for a wider class of processes. It is shown in [4] that
fBm can be well approximated with MEBP (approximation is exact
only in the case of a Brownian motion, for which H = 1/2), and it
is known that the Brownian motion is included in the class of MEBP.
The conjecture is thus true for the Brownian motion.

The estimate is good for both positive and negative θ, correspond-
ing respectively to the increasing and decreasing parts of the spectrum
for multifractal processes. Estimation of the partition function for neg-
ative θ is a well known difficult issue, and structure functions based
on wavelet coefficients are not stable for negative θ. Wavelet leaders
overcome this problem. A numerical study comparing the two meth-
ods will follow.

In the numerical study of the random lognormal cascade, we noted
the importance of the assumption of conservation of mass when cas-
cading the weights. Specifically, if the weights have a mean differ-
ent from 1/2, then this introduces an error in the estimation of the
crossing-tree partition function. This observation follows from the
assumption µEW = 1 needed to define nondegenerated MEBP pro-
cesses, see [7]. The definition of the structure function in (1) needs to
be slightly modified by multiplying the crossing durations at scale n
by the factor an, where a = 1/(µEW ). Estimates for EW can be
easily constructed, but are not detailed here.

The estimation of the crossing-tree partition function is more chal-
lenging when the data have Hölder coefficients less than 0.5. For very
irregular processes, the discrete nature of the data makes the estima-
tion of the crossing tree difficult at fine scales, since many crossings
are missed. The poor estimation of the crossing tree results in a poor
estimation of the partition function. This was noticed in particular in
our numerical study when working with fBm with H < 0.5, where
estimation for both positive and negative values of θ does not provide
a good match with the theory. This effect is also visible with random
cascades, where the estimated partition function is in better agreement
with the theoretical curve the larger the value of the smallest Hölder
exponent.

To conclude, the use of the crossing tree looks promising, but many
different issues as discussed above remain to be solved. Comparison
with wavelet leaders has to be performed, but as a new approach, much
work obviously is needed to allow a fair comparison. But an advantage
can already be put forward: the crossing tree approach works for ir-
regularly sampled data and can thus provide an alternative to wavelets
in such a situation, e.g. in finance applications.
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monic Analysis. Birkhäuser Verlag Basel/Switzerland pp 219–
264.

[9] JONES, O.D. 2004. Fast, efficient on-line simulation of self-
similar processes. Thinking in patterns: Fractal and Related
Phenomena in Nature, M.M. Novak Ed., pp 165–176, World
Scientific 2004.

[10] JONES, O.D., AND ROLLS, D.A. 2011. A characterisation of,
and hypothesis test for, continuous local martingales. Electronic
Comm. Prob. 16, pp 638–651.

[11] JONES, O.D., AND SHEN, Y. 2004. Estimating the Hurst index
of a self-similar process via the crossing tree. Signal Processing
Letters 11, pp 416–419.

[12] JONES, O.D., AND SHEN, Y. 2005. A non-parametric test for
self-similarity and stationarity in network traffic. Fractals and
Engineering. New trends in theory and applications. J.Levy-
Vehel and E. Lutton (Eds), Springer.

[13] MANDELBROT, B.B. AND RIEDI, R.H. 1997 Inverse Mea-
sures, the Inversion Formula, and Discontinuous Multifractals
Advances in Applied Mathematics, 18 50–58

[14] RIEDI, R.H. AND MANDELBROT, B.B. 1997. Inversion For-
mula for Continuous Multifractals. Advances in Applied Mathe-
matics, 19 332–354.


