Impact of the data uncertainties on the regression model:
application to the trajectory-aided surface GNSS navigation
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Résumé — L’axe ferroviaire est défini dans la base de données a bord du train par une ligne polygonale avec un certain niveau
d’incertitude. Le but de ce papier est d’estimer la distance parcourue, la vitesse et ’accélération en utilisant un récepteur GNSS
a bas cotit et d’étudier 'impact de l'incertitude sur ces estimations. L’algorithme des moindres carrés (LS) a base d’un bloc de
mesures GNSS et d’'un modéle dynamique réaliste du train est con¢u pour estimer la distance parcourue, la vitesse et ’accélération
du train. L’erreur moyenne et le second moment de ces estimations sont calculés de fagon théorique et comparés avec les résultats
de simulations Monte-Carlo.

Abstract — The railway centerline is defined by a polygonal line with some level of uncertainty in the train onboard database.
The goal of this paper is to estimate the travelled distance, velocity and acceleration by using a low-cost GNSS receiver and to
study the impact of the centerline uncertainty on these estimations. The Least Square (LS) algorithm based on a block of GNSS
measurements and a realistic dynamical train model is designed to estimate the travelled distance, velocity and the acceleration
of the train. The mean error and the second order moment are theoretically calculated for these estimations and compared with

the results of Monte-carlo simulations.

1 Introduction and Motivation

Let us consider the following situation often arising in the
regression analysis: the matrix of regressors is not per-
fectly known and the responses are contaminated by an
additional random noise which cannot be assumed in the
theoretical model. The practical needs of signal process-
ing for surface GNSS navigation are reduced to the solu-
tion of the weighted least squares problem in the above
mentioned situation. Safe and precise train positioning is
essential for maintaining the safety and efficiency of the
railways operating system. Hence, some desired parame-
ters such as the travelled distance and the speed should be
estimated with a high level of accuracy [1]-[2], reliability
and integrity [3]-[5].

The algorithms described in this paper are devoted to
the trajectory-aided train positioning by a low-cost GNSS
receiver. The railway centerline geometry provides the
users with some very reliable a priori information on the
smooth character of the train trajectory. But this in-
formation is available within an additional database of
noisy measurements. To estimate the train travelled dis-
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tance, speed and acceleration, an optimal integration of
the database information with the real-time GNSS mea-
surements is necessary. Two crucially important questions
arise: i) what is the impact of such a railway centerline
geometry imprecision on the estimation of train speed, ac-
celeration and distance? ii) will a change of acceleration
(jerk) cause imprecise estimation of the train speed, accel-
eration and distance? Dealing with these questions leads
us to consider a non-linear regression model with random
disturbances caused by data uncertainties.

This paper is organized as follows. Section 2 is devoted
to the problem statement and contribution. Section 3 pro-
vides the geometric design of railway centerline model, the
train dynamical model and the method of train distance,
velocity and acceleration estimation. The impact of the
centerline uncertainty on these three estimations is dis-
cussed in this section 4. Simulation results are shown in
section 5. Finally, some conclusions are drawn in section 6.

2 Problem Statement and Contri-
bution

Let us consider that the train runs along the train track
with a variable speed. The contribution of this paper



is two fold. First, assuming that the train acceleration
is constant over a short time period, the train travelled
distance, speed and acceleration are estimated simultane-
ously by using a block of GNSS measurements and the
train dynamical model. Using a block of measurements is
necessary to overcome the ill-posed nature of the estima-
tion problem. Second, the negative impact of the railway
centerline uncertainty on the mean error and on the sec-
ond order moment of these three estimations is estimated.
The equations for first two moments of these three esti-
mations are obtained and compared with the results of
Monte-Carlo simulations.

3 Description of Models

3.1 Railway Centerline Model

Let us assume that the railway centerline is approximated
by a polygonal line (piecewise linear curve), which rep-
resents a connected series of line segments in the Earth-
centered, Earth-fixed coordinates. More formally, the rail-
way centerline is defined by a sequence of vertices Zy, Z1,
Za, ..., Zn, Z; € R3, so that the curve consists of the line
segments connecting the consecutive vertices. It is as-
sumed that the errors related with such an approximation
of the vector function ¢ — X (¢), £ € R, X € R3, defining
the railway centerline is negligible for our study. Here and
in the rest of the paper, £ denotes the curvilinear abscissa,
or the covered distance, and A = || Z;41 — Z,||2 = const is
the distance between two adjacent vertices, respectively.

Unfortunately, the on-board database uses an impre-
cise information about the positions of vertices, namely :
2y, 21, %o, ..., 2Z,. The quantity & = Z; — Z; defines
the knowledge uncertainty concerning the train track (see
Fig. 1). To simplify the presentation, a two-dimensional
train trajectory is considered.

Centerline from_database — —

Z- position from database

\ Z; true vertex position

True centerline

Fic. 1: Railway centerline model.

3.2 Train Dynamical Model

The train dynamical model is described by an equation
formulated in terms of the covered distance, speed and
acceleration (see Fig. 2). Let At = ¢, — tx—1 be the
GNSS sampling interval and t; denotes the instant of the
k-th measurement. Let us consider a short time period of
length T'= (¢+ 1) - At where ¢ is a positive integer. Over
this time period, the distance ¢ covered by the train, its

speed v, and its acceleration a at instant ¢ (1 < k < q)
are given as follows

1
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Fia. 2: Typical train motion diagram.

To simplify the notations, it is assumed that At = 1 (s).
Let us consider the block of ¢+ 1 last GNSS measurements
at time instant t;. Assuming that the acceleration ay is
constant during 7' (s), the train position is given by

X(lk—g+p) = Zj1+ Ej - [li—gqip —A-(G—1)], (2)

S 1
qand Ej = (ef,e),el)’ = 3G —

where p = 0,1, .. 2 €1 €1
Zj) is the directional vector corresponding to the segment
number j, ||Ej;|l2 = 1. The current segment number j =
j(k—q+p), viewed as a function of k — ¢+ p, is calculated
as: j(k—qg+p) =min{j € N|j > [ly—q+p/A|} where N is
the set of natural numbers. The distance £;_44, is given
as

Ly,
legip=(1 (p—q) 3(>—a)*)| vk
ay

= Wp - oka (3)

where 0, must be estimated.

3.3 Exact and Imprecise Pseudo-range Mea-

surement Model

Suppose that there are n satellites located at the known
positions X = (z;,v:,2:)7,i =1,...,n. The pseudo-range
Th—g+p from the i-th satellite to the train can be written
as:

. . . .
Theqip =0kqip T b7 TP kg
=N X (Ckgip) = X7 ll2 + by Pt ef_gp,
where b5 ~9*P is a user clock bias, ¢ =~ 2.9979-10%m /s is the
speed of light and &}, ~ N(0,0?) is the pseudo-range
noise at time k£ — ¢ + p. By linearizing the pseudo-range
equation around the working point £;_44p 0, we get

(4)
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where the working point is calculated as fx_g4po = wp -
Or0 = wp- ék 1, d}'€ a+p.0 is the distance from the working
point to the i-th satellite and hk atp0 18 the coefficient
of the Jacobian matrix. The above mentioned linearized
measurement equations can be rewritten in the following
matrix form

= Di—g4p,0 = Hi—q1p,0 - (Ck—g+p — Lk—q+p,0)
+ 1 Cb];_q—i_p + Ek—g+p> (6)

where 1,, is a vector of dimension n whose each element is

one. Substituting equation (3) into equation (6) and the

final pseudo-range measurement model is rewritten in the

matrix form as

RF —D§ + Y ~ HE - B, + EF, (7)

where the vector By = (0F,cbF,---
and must be estimated.
Since the true vertex position Z; is unknown and only

Ri—q1p

,cbF=)T is unknown

its imprecise estimation Zj is available, let us assume that
the random vector {; = Z;—Z; is assumed to be uniformly
distributed in the cube [—b, b]? with b > 0. So an unprecise
measurement model is calculated as

RF —Df +Y§ ~ HE - B + 2, (8)
where DF, Y, and HE are calculated exactly as in the
above equation but with the vector Z 7 Ej = — =
. 1Zj+1 = Zjll2
instead of Z;, Ej;.

4 Impact of Centerline Uncertainty
on the LS Estimator

The goal of this section is to study the impact of the rail-
way centerline uncertainty £; on the first and second mo-

ments of the LS estimator Bk. The measurement equation
(8) can be written as follows:

Y* 4+ AYF ~ (HY + AHF) - B + =

where Y* = RF — DE + Y are the responses, AY* =
Df — DE — Y + Y and AH* = H} — H} denote the
data uncertainties in the regression model. We follow here
the analysis of the data uncertainty impact on the LS
estimators developed in [6]. The LS estimator is given by

~ T -1 T

Bro=|(HE+aH")" (HE+AHY) | (Hf + AHY)

(YF+AYF). (9)

Since the random vector AY'* acts in the same way as the
pseudo-range noise =, the two errors can be considered
together. After expanding | (Hf+AH*)" (HE-+AHY)]

around HY and computing the expectation of (9), the
mean error is

E(Bx — Br) = (Ek)_l {(FS)TC F+ G} Br,  (10)

Zjt — Zj

— —N\NT
where B® = (H’g) ..

lated exactly as in equation (7) but with the working point
Ly—q4p,0 = Wp - Ox—1. The matrix functions of second mo-

b e\ =1 s\ T
—E [(AH’f)TH’g (B") (M) AHk] L C =
=\ "1 =\ T T
E [AH’“ (B")  (m) AH’“] and F = E |(AH")" AH"|
underline only the impact of data uncertainties in the ma-
trix of regressors on the mean error of the LS estimator.

Let us now define v, ,, = E(AH,AH). The matrix C
is given by

. ==k
The matrices H, are calcu-

ments G

q
T T
> Ve, k—uX1,u+1%q Wa—u 01, (g+1)
u=0
T T
Z’kal,kquLqulwqflwlZ*u 0, (g+1)

C = u=0 ;

q
T T
> Vh—q,k—uX1,u+1%0 Wg—u  On,

u=0

(g+1)

where x7 ., and p3 ., are two matrices of size 3 x n
and (¢ + 1) x n, respectively, extracted from the following
matrix :

X1,2

() " (m) = (o o

Finally, let us define the following matrices

X1, (g+1) ) .
H2,(q+1)

e éotrmu,kfuwﬂquw O30+ |
0(g+1),3 0(g+1).(¢+1)
G— uXi:OWXi:Otl‘Qu+1,v+1’7k—v,k7quTquq7v 03,(4+1)
0(g+1).3 0(g+1),(a+1)

where Q41,041 is a block of size n x n of the following

(g +1)n x (g + 1)n matrix Q = F]g (Ek)_l (HO)T :

Q1,1 Q1,2 Q1,(g+1)
Q2,1 Q2,2 Q2,(g+1)
Q=| : |
Qu+1),1 Qa+1),2 Q(g+1),(g+1)

After expanding and ignoring the terms of order (AH*)?
and under the assumption that the uncertainties AH k are
reasonably small, the second moment of Sy is given by

B~ BB - p)" = 021+ (BY) " (78)" (2

~ N - NT + MH, (Ek)f . (1)
M =

where the matrix functions ¥y = E {AY’“ (AYk)T}

E[AH*8T (AHY)"| and N = E[av*g] (am¥)T]|
underline the impact of the data uncertainties in the ma-

trix of regressors and responses on the second order mo-
ment of the LS estimator. After calculating, we get



My 1 M 2 My (q+1)
I M2,1 ]\4-2,2 MQ,(.q-l—l)
Mginya Mgg)2 Mg i1y,(g+1)
and
Ny Ni2 Ni(g+1)
wo| M M N |
Nt N2 Ngt1),(a+1)
where
Myt1,041 = lh—wllb—vVi—u,k—v
and

Nutt,041 = Lhulk—v,0Vb—uj—v — L E(AHp— AD}_ )

are two blocks of size n x n of matrices M and N, respec-
tively, £x—u, k—, are calculated exactly as in equation (3)
and u,v =0, ...,q.

5 Numerical Simulations

The simulation scenario is shown in Fig. 2. The compari-
son of the theoretical moments for the estimated distance,
speed and acceleration with the results of a 10*-repetition
Monte-Carlo simulation, is shown in Fig. 3-4. The stan-
dard GNSS constellation has been used with n = 6 visible
satellites and with the pseudo-range SD o = 2 (m). The
distance between two adjacent vertices has been chosen
m = 50 (m). The centerline uncertainty b and the sam-
pling period ¢ have been chosen of 2 (m) and 20 samples,
respectively. The true acceleration during the accelera-
tion, free-running and braking period is 0.8 m/s?, 0 m/s?
and —0.8 m/s?.
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F1G. 3: The mean error of the estimated distance, speed
and acceleration for the centerline uncertainty of &; €
[-2,2]°.
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FiG. 4: The second order moment of the estimated dis-
tance, speed and acceleration for the centerline uncer-
tainty of &; € [—2,2]%

6 Conclusions

The results show that the mean error of estimated dis-
tance, speed and acceleration obtained by GNSS is al-
ways practically unbiased, even with an imprecise geomet-
ric model of the railway centerline. They also show that
the change of acceleration causes an imprecise estimation
of the travelled distance, speed and acceleration only for a
short time period. Due to the existence of jerk, the mean
error is obviously biased during this short time period, but
the second order moment remains almost unchanged.
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