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∗Guoliang Zhu1, Lionel Fillatre2, Igor Nikiforov11ICD-LM2S-UTTUMR STMR-CNRS, Troyes, Frane2Laboratoire I3SUMR7271-UNS CNRS, Sophia-Antipolis, Franeguoliang.zhu�utt.fr, lionel.fillatre�i3s.unie.fr, igor.nikiforov�utt.frRésumé � L'axe ferroviaire est dé�ni dans la base de données à bord du train par une ligne polygonale ave un ertain niveaud'inertitude. Le but de e papier est d'estimer la distane parourue, la vitesse et l'aélération en utilisant un réepteur GNSSà bas oût et d'étudier l'impat de l'inertitude sur es estimations. L'algorithme des moindres arrés (LS) à base d'un blo demesures GNSS et d'un modèle dynamique réaliste du train est onçu pour estimer la distane parourue, la vitesse et l'aélérationdu train. L'erreur moyenne et le seond moment de es estimations sont alulés de façon théorique et omparés ave les résultatsde simulations Monte-Carlo.Abstrat � The railway enterline is de�ned by a polygonal line with some level of unertainty in the train onboard database.The goal of this paper is to estimate the travelled distane, veloity and aeleration by using a low-ost GNSS reeiver and tostudy the impat of the enterline unertainty on these estimations. The Least Square (LS) algorithm based on a blok of GNSSmeasurements and a realisti dynamial train model is designed to estimate the travelled distane, veloity and the aelerationof the train. The mean error and the seond order moment are theoretially alulated for these estimations and ompared withthe results of Monte-arlo simulations.1 Introdution and MotivationLet us onsider the following situation often arising in theregression analysis: the matrix of regressors is not per-fetly known and the responses are ontaminated by anadditional random noise whih annot be assumed in thetheoretial model. The pratial needs of signal proess-ing for surfae GNSS navigation are redued to the solu-tion of the weighted least squares problem in the abovementioned situation. Safe and preise train positioning isessential for maintaining the safety and e�ieny of therailways operating system. Hene, some desired parame-ters suh as the travelled distane and the speed should beestimated with a high level of auray [1℄-[2℄, reliabilityand integrity [3℄-[5℄.The algorithms desribed in this paper are devoted tothe trajetory-aided train positioning by a low-ost GNSSreeiver. The railway enterline geometry provides theusers with some very reliable a priori information on thesmooth harater of the train trajetory. But this in-formation is available within an additional database ofnoisy measurements. To estimate the train travelled dis-
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tane, speed and aeleration, an optimal integration ofthe database information with the real-time GNSS mea-surements is neessary. Two ruially important questionsarise: i) what is the impat of suh a railway enterlinegeometry impreision on the estimation of train speed, a-eleration and distane? ii) will a hange of aeleration(jerk) ause impreise estimation of the train speed, ael-eration and distane? Dealing with these questions leadsus to onsider a non-linear regression model with randomdisturbanes aused by data unertainties.This paper is organized as follows. Setion 2 is devotedto the problem statement and ontribution. Setion 3 pro-vides the geometri design of railway enterline model, thetrain dynamial model and the method of train distane,veloity and aeleration estimation. The impat of theenterline unertainty on these three estimations is dis-ussed in this setion 4. Simulation results are shown insetion 5. Finally, some onlusions are drawn in setion 6.2 Problem Statement and Contri-butionLet us onsider that the train runs along the train trakwith a variable speed. The ontribution of this paper



is two fold. First, assuming that the train aelerationis onstant over a short time period, the train travelleddistane, speed and aeleration are estimated simultane-ously by using a blok of GNSS measurements and thetrain dynamial model. Using a blok of measurements isneessary to overome the ill-posed nature of the estima-tion problem. Seond, the negative impat of the railwayenterline unertainty on the mean error and on the se-ond order moment of these three estimations is estimated.The equations for �rst two moments of these three esti-mations are obtained and ompared with the results ofMonte-Carlo simulations.3 Desription of Models3.1 Railway Centerline ModelLet us assume that the railway enterline is approximatedby a polygonal line (pieewise linear urve), whih rep-resents a onneted series of line segments in the Earth-entered, Earth-�xed oordinates. More formally, the rail-way enterline is de�ned by a sequene of verties Z0, Z1,
Z2, . . . , Zn, Zi ∈ R

3, so that the urve onsists of the linesegments onneting the onseutive verties. It is as-sumed that the errors related with suh an approximationof the vetor funtion ℓ 7→ X(ℓ), ℓ ∈ R, X ∈ R
3, de�ningthe railway enterline is negligible for our study. Here andin the rest of the paper, ℓ denotes the urvilinear absissa,or the overed distane, and λ = ‖Zj+1 − Zj‖2 = onst isthe distane between two adjaent verties, respetively.Unfortunately, the on-board database uses an impre-ise information about the positions of verties, namely :

Z̃0, Z̃1, Z̃2, . . . , Z̃n. The quantity ξi = Zi − Z̃i de�nesthe knowledge unertainty onerning the train trak (seeFig. 1). To simplify the presentation, a two-dimensionaltrain trajetory is onsidered.PSfrag replaements
True enterlineCenterline from database

Zi true vertex position
Z̃i position from databaseis the true train positionis the position from databaseThe earthTrain trak on the tangent plane Fig. 1: Railway enterline model.3.2 Train Dynamial ModelThe train dynamial model is desribed by an equationformulated in terms of the overed distane, speed andaeleration (see Fig. 2). Let ∆t = tk − tk−1 be theGNSS sampling interval and tk denotes the instant of the

k-th measurement. Let us onsider a short time period oflength T = (q+1) ·∆t where q is a positive integer. Overthis time period, the distane ℓk overed by the train, its

speed vk and its aeleration ak at instant tk (1 ≤ k ≤ q)are given as follows




ℓk = ℓk−1 + vk−1 ·∆t+
1

2
ak−1 ·∆t2

vk = vk−1 + ak−1 ·∆t

ak = ak−1. (1)
0 10 20 30 40 50 60 70 80 90 100

0

200

400

0 10 20 30 40 50 60 70 80 90 100
0

10

20

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

Distance (m)

Speed (m/s)

Acceleration (m/s²)

Time (s)

Time (s)

Time (s)PSfrag replaements

Fig. 2: Typial train motion diagram.To simplify the notations, it is assumed that ∆t = 1 (s).Let us onsider the blok of q+1 last GNSS measurementsat time instant tk. Assuming that the aeleration ak isonstant during T (s), the train position is given by
X(ℓk−q+p) = Zj−1 + Ej · [ℓk−q+p − λ · (j − 1)] , (2)where p = 0, 1, . . . , q and Ej = (ejx, e

j
y, e

j
z)

T =
1

λ
(Zj+1 −

Zj) is the diretional vetor orresponding to the segmentnumber j, ‖Ej‖2 = 1. The urrent segment number j =
j(k−q+p), viewed as a funtion of k−q+p, is alulatedas: j(k− q+ p) = min {j ∈ N|j ≥ ⌊ℓk−q+p/λ⌋} where N isthe set of natural numbers. The distane ℓk−q+p is givenas
ℓk−q+p=

(
1 (p−q) 1

2 (p− q)2
)



ℓk
vk
ak


 = ωp · θk, (3)where θk must be estimated.3.3 Exat and Impreise Pseudo-range Mea-surement ModelSuppose that there are n satellites loated at the knownpositions Xs

i = (xi, yi, zi)
T , i = 1, ..., n. The pseudo-range

rik−q+p from the i-th satellite to the train an be writtenas:
rik−q+p =dik−q+p + cbk−q+p

r + εik−q+p

=‖X(ℓk−q+p)−Xs
i ‖2 + cbk−q+p

r + εik−q+p,
(4)where bk−q+p

r is a user lok bias, c ≃ 2.9979·108m/s is thespeed of light and εik−q+p ∼ N (0, σ2) is the pseudo-rangenoise at time k − q + p. By linearizing the pseudo-rangeequation around the working point ℓk−q+p,0, we get
rik−q+p − dik−q+p,0 ≃hi

k−q+p,0 · (ℓk−q+p − ℓk−q+p,0)

+ cbk−q+p
r + εik−q+p,

(5)



where the working point is alulated as ℓk−q+p,0 = ωp ·

θk,0 = ωp · θ̂k−1, dik−q+p,0 is the distane from the workingpoint to the i-th satellite and hi
k−q+p,0 is the oe�ientof the Jaobian matrix. The above mentioned linearizedmeasurement equations an be rewritten in the followingmatrix form

Rk−q+p −Dk−q+p,0 ≃ Hk−q+p,0 · (ℓk−q+p − ℓk−q+p,0)

+ 1n · cbk−q+p
r + Ξk−q+p, (6)where 1n is a vetor of dimension n whose eah element isone. Substituting equation (3) into equation (6) and the�nal pseudo-range measurement model is rewritten in thematrix form as

Rk −Dk
0 + Y k

0 ≃ Hk
0 · βk + Ξk, (7)where the vetor βk = (θTk , cb

k
r , · · · , cb

k−q
r )T is unknownand must be estimated.Sine the true vertex position Zj is unknown and onlyits impreise estimation Z̃j is available, let us assume thatthe random vetor ξj = Zj−Z̃j is assumed to be uniformlydistributed in the ube [−b, b]3 with b > 0. So an unpreisemeasurement model is alulated as

Rk − D̃k
0 + Ỹ k

0 ≃ H̃k
0 · βk + Ξk, (8)where D̃k

0 , Ỹ k
0 , and H̃k

0 are alulated exatly as in theabove equation but with the vetor Z̃j , Ẽj =
Z̃j+1 − Z̃j

‖Z̃j+1 − Z̃j‖2instead of Zj, Ej .4 Impat of Centerline Unertaintyon the LS EstimatorThe goal of this setion is to study the impat of the rail-way enterline unertainty ξj on the �rst and seond mo-ments of the LS estimator β̂k. The measurement equation(8) an be written as follows:
Y k +∆Y k ≃ (Hk

0 +∆Hk) · βk + Ξk,where Y k = Rk − Dk
0 + Y k

0 are the responses, ∆Y k =

Dk
0 − D̃k

0 − Y k
0 + Ỹ k

0 and ∆Hk = H̃k
0 − Hk

0 denote thedata unertainties in the regression model. We follow herethe analysis of the data unertainty impat on the LSestimators developed in [6℄. The LS estimator is given by
β̂k=

[(
Hk

0 +∆Hk
)T (

Hk
0 +∆Hk

)]−1 (
Hk

0 +∆Hk
)T

·
(
Y k +∆Y k

)
. (9)Sine the random vetor ∆Y k ats in the same way as thepseudo-range noise Ξk, the two errors an be onsideredtogether. After expanding [(Hk

0 +∆Hk
)T (

Hk
0 +∆Hk

)]−1around Hk
0 and omputing the expetation of (9), themean error is

E(β̂k − βk) =
(
B

k
)
−1

[(
H

k

0

)T

C − F +G

]
βk, (10)

where B
k

=
(
H

k

0

)T

H
k

0 . The matries H
k

0 are alu-lated exatly as in equation (7) but with the working point
ℓk−q+p,0 = ωp · θk−1. The matrix funtions of seond mo-ments G = E

[(
∆Hk

)T
H

k

0

(
B

k
)
−1 (

H
k

0

)T

∆Hk

]
, C =

E

[
∆Hk

(
B

k
)
−1 (

H
k

0

)T

∆Hk

] and F = E

[(
∆Hk

)T
∆Hk

]underline only the impat of data unertainties in the ma-trix of regressors on the mean error of the LS estimator.Let us now de�ne γℓ,m = E(∆Hℓ∆HT
m). The matrix Cis given by

C =




q∑
u=0

γk,k−uχ
T
1,u+1ω

T
q ωq−u 0n,(q+1)

q∑
u=0

γk−1,k−uχ
T
1,u+1ω

T
q−1ωq−u 0n,(q+1)... ...

q∑
u=0

γk−q,k−uχ
T
1,u+1ω

T
0 ωq−u 0n,(q+1)




,where χT
1,u+1 and µT

2,u+1 are two matries of size 3 × nand (q+1)×n, respetively, extrated from the followingmatrix :
(
B

k
)
−1 (

H
k

0

)T

=

(
χ1,1 χ1,2 · · · χ1,(q+1)

µ2,1 µ2,2 · · · µ2,(q+1)

)
.Finally, let us de�ne the following matries

F =




q∑
u=0

tr γk−u,k−uω
T
q−uωq−u 03,(q+1)0(q+1),3 0(q+1),(q+1)


 ,

G=




q∑
u=0

q∑
v=0

trQu+1,v+1γk−v,k−uω
T
q−uωq−v 03,(q+1)0(q+1),3 0(q+1),(q+1)


 ,where Qu+1,v+1 is a blok of size n × n of the following

(q + 1)n× (q + 1)n matrix Q = H
k

0

(
B

k
)
−1 (

H
k

0

)T :
Q =




Q1,1 Q1,2 · · · Q1,(q+1)

Q2,1 Q2,2 · · · Q2,(q+1)... ... . . . ...
Q(q+1),1 Q(q+1),2 · · · Q(q+1),(q+1)


 .After expanding and ignoring the terms of order (∆Hk)2and under the assumption that the unertainties ∆Hk arereasonably small, the seond moment of β̂k is given by

E(β̂k − βk)(β̂k − βk)
T = σ2I +

(
B

k
)
−1 (

H
k

0

)T

(ΣY

−N −NT +M)H
k

0

(
B

k
)
−1

, (11)where the matrix funtions ΣY = E

[
∆Y k

(
∆Y k

)T ]
, M =

E

[
∆Hkβkβ

T
k

(
∆Hk

)T ] and N = E

[
∆Y kβT

k

(
∆Hk

)T ]underline the impat of the data unertainties in the ma-trix of regressors and responses on the seond order mo-ment of the LS estimator. After alulating, we get



M =




M1,1 M1,2 · · · M1,(q+1)

M2,1 M2,2 · · · M2,(q+1)... ... . . . ...
M(q+1),1 M(q+1),2 · · · M(q+1),(q+1)


and

N =




N1,1 N1,2 · · · N1,(q+1)

N2,1 N2,2 · · · N2,(q+1)... ... . . . ...
N(q+1),1 N(q+1),2 · · · N(q+1),(q+1)


 ,where

Mu+1,v+1 = ℓk−uℓk−vγk−u,k−vand
Nu+1,v+1 = ℓk−uℓk−v,0γk−u,k−v − ℓk−uE(∆Hk−u∆DT

k−v)are two bloks of size n×n of matries M and N , respe-tively, ℓk−u, ℓk−v are alulated exatly as in equation (3)and u, v = 0, ..., q.5 Numerial SimulationsThe simulation senario is shown in Fig. 2. The ompari-son of the theoretial moments for the estimated distane,speed and aeleration with the results of a 104-repetitionMonte-Carlo simulation, is shown in Fig. 3-4. The stan-dard GNSS onstellation has been used with n = 6 visiblesatellites and with the pseudo-range SD σ = 2 (m). Thedistane between two adjaent verties has been hosen
m = 50 (m). The enterline unertainty b and the sam-pling period q have been hosen of 2 (m) and 20 samples,respetively. The true aeleration during the aelera-tion, free-running and braking period is 0.8 m/s2, 0 m/s2and −0.8 m/s2.
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Monte−carloFig. 4: The seond order moment of the estimated dis-tane, speed and aeleration for the enterline uner-tainty of ξj ∈ [−2, 2]2.6 ConlusionsThe results show that the mean error of estimated dis-tane, speed and aeleration obtained by GNSS is al-ways pratially unbiased, even with an impreise geomet-ri model of the railway enterline. They also show thatthe hange of aeleration auses an impreise estimationof the travelled distane, speed and aeleration only for ashort time period. Due to the existene of jerk, the meanerror is obviously biased during this short time period, butthe seond order moment remains almost unhanged.Referenes[1℄ Zhu, G., Fillatre, L., Nikiforov, I. Impat of the rail-way enterline geometry unertainties on the train ve-loity estimation by GPS. 5th International Confer-ene on Personal Satellite Servies, Toulouse, Frane,2013.[2℄ Zhu, G., Fillatre, L., Nikiforov, I. Estimation of thetrain travelled distane, veloity and aeleration byusing GPS signals. The European Navigation Con-ferene, Vienna, Austria, 2013.[3℄ Nikiforov, I., Choquette, F. Integrity Equations forSafe Train Positioning Using GNSS. Istituto Italianodi Navigazione, vol.171 pp. 52-77, 2003.[4℄ Laresse, H., Grall, A., and Nikiforov, I. Statistialfault detetion with linear or nonlinear nuisane pa-rameters. Safeproess 2003, IFAC Conferene, Wash-ington, D.C. 6 p, 9-11 June 2003.[5℄ Laresse, H., Grall, A., and Nikiforov, I. Fault de-tetion with non-linear nuisane parameters and safetrain navigation. Pro. 16th IFAC World Congress,Prague. 1-6 p, 3-8 July 2005.[6℄ Hodges, S.D., Moore, P.G. Data Unertainties andLeast Squares Regression. JRSS, Series C (AppliedStatistis), vol.21 pp.185-195, 1972.


