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Résumé – De nombreux travaux ont étudié la topologie de l’internet, mais peu d’entre eux se sont intéressés à comment elle

évolue. Cet article se concentre la dynamique de la topologie de routage au niveau IP, et nous étudions plus particulièrement

l’impact de la fréquence de mesure sur les observations de la dynamique. Pour cela, nous étudions tant des données issues de

mesures périodiques des arbres de routage à partir d’un moniteur vers un ensemble de destinations, que le comportement d’un

modèle de la dynamique de la topologie que nous avons présenté précédemment. Analyses précédentes ont montré que, après une

augmentation initiale rapide, le nombre de nouveaux liens observés soutient une croissance linéaire pour une longue période de

temps. Bien que la pente de cette partie linéaire puisse être considérée comme un indicateur de la vitesse de la dynamique, Nous

montrons en fait que cette pente dépend intrinsèquement de la fréquence de mesure et qu’il est très difficile, sinon impossible, de

quantifier la vitesse réelle de l’évolution de la topologie de l’internet.

Abstract – Many works have studied the Internet topology, but few have investigated the question of how it evolves over

time. This paper focuses on the Internet routing IP-level topology dynamics, and in particular on the impact of the measurement

frequency on the observed dynamics. For this end, we study both data from periodic measurements of routing trees from a single

monitor to a fixed destination set, and the behavior of a model of the topology dynamics that we previously introduced. Previous

analyses showed that after an initial fast increase, the number of new observed links sustains a linear growth for extended periods

of time. The slope of this linear part can be considered as an indicator of the speed of the observed dynamics. We show that this

speed depends intrinsically on the measurement frequency and that it is very difficult, if not impossible, to quantify the actual

speed of the internet topology evolution

1 Introduction

Studying the structure of the internet topology is an im-
portant and difficult question. No official map being avail-
able, researchers have to conduct costly measurement cam-
paigns, and deal with the fact that the obtained data can
be biased [3, 1]. Studying the dynamics of this topology
is therefore an equally hard, if not harder, problem.

Here we study the dynamics of ego-centered view [4] of
the internet topology at the ip-level. Each ego-centered

view is a tree of routing paths from the monitor to the
destinations. A routing tree represents a snapshot of the
network around the monitor at a given time. One ego-

centered view can be measured quickly and with low net-
work load with the tracetree tool [4]. Repeating those
measurements periodically therefore allows to study the
dynamics of this view.

Previous work has shown that ego-centered views ex-
hibit strong dynamics, and in particular that the set of
observed ip addresses and links evolves much more quickly
than what was previously expected [6]. In all our measure-
ments, the number of links observed since the measure-

ment beginning displays a linear progression after a fast
initial growth. Fig. 1(a) illustrates this. Our main goal in
this paper is to show how measurement frequency affects
the observed behavior. We will focus on the study of the
slope α of the linear part of the plot. We analyze both
the real data and the behavior of a model of the topology
dynamics that we previously introduced [5, 7].

2 Model

We introduced in previous works [7, 5] a simple model
that reproduces the observed behavior. This model in-
corporates two factors that have been shown to play an
important role in our observations: load-balancing, i.e.
the fact that at any given time several routes may exist
from the monitor to a destination, and routing dynam-
ics, i.e. the fact that routes can change with time. Here
we briefly describe the model and show it captures the
observed behavior.

The model incorporates four ingredients: the routing
topology, the routes from the monitor to the destinations,
load-balancing, and routing changes. The goal of the



The model

Topology:
random graph (Erdős–Rényi or power-law)
n – number of nodes
m – number of links
d – number of destinations
r – number of measurement rounds
Measurements:
random breadth-first search towards d destinations
Dynamics:
s – number of link swaps.

Table 1: Model parameters

model was to obtain a simple baseline model which makes
it possible to investigate the role of each component.

The network topology is modeled by a random graph
with n nodes and m links, obtained with the Erdős–Rényi
model [2]. Given a generated topology, we assume that the
route between the monitor and a destination is a shortest
path. To simulate load-balancing we implement a random

breadth-first search: the neighbors of each node are con-
sidered in a random order. In this way, two consecutive
measurements of shortest path trees will not be identi-
cal, even if the underlying graph does not change inbe-
tween. Next, we model routing changes by using a sim-
ple approach based on link rewiring, or swap. It consists
in choosing uniformly at random two links and swapping
their extremities. Finally, the simulation is performed in
the following way: we generate a random graph with n
nodes and m links, randomly select one node as the mon-
itor and d nodes as the destinations, then we simulate r
measurement rounds with random breadth-first searches.
Each obtained tree simulates one ego-centered view. Be-
tween two consecutive rounds we modify the topology by
performing s random swaps, where n, m, s and r are pa-
rameters of the model. These parameters are summarized
in Table 1.

Simulations show that the model captures the main
characteristics of the dynamics of the ego-centered views:
(1) initial fast growth at the beginning; (2) linear behav-
ior which can be described by the slope α (see Fig. 1).
Note however that there is a quantitative difference be-
tween empirical data and simulation results: in particular
the size of a routing tree, given by the first point in the
plot, is approximately equal to 2 500 in practice whereas
it is close to 1 000 in the model; the slope for empirical
data is approximately equal to 0.1, while it is closer to 1
for the model. Note however that our goal is to reproduce
the qualitative behavior observed in real data, in order
to understand fundamental questions such as the one we
are studying here. Quantitavely matching the model with
our empirical observations is an interesting, but much less
fundamental question, which we leave for future work.
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Figure 2: Number of links observed since measurement
beginning with two different frequencies. Simulations.

3 Impact of the time interval be-

tween measurements

The observed slope depends both on the rate of routing
changes and load balancing: the more changes happen,
the more new links will be observed over time; and the
more routes exist between two nodes, the more consecutive
measurements will observe new routes.

On the one hand, if the measurement frequency is too
low, we will fail to observe some links, because they will
disappear before the corresponding route is explored, and
the value of the slope will be lower than αm. Figure 2
illustrates this with model simulations performed with one
and two swaps per round.

On the other hand, assuming that routing changes hap-
pen at a constant rate, if measurements are performed
fast enough, all routes from the monitor to the destina-
tions will be observed. More formally, let ∆ be the time
interval between two consecutive rounds. If ∆i and ∆j

are two such intervals, let αi and αj be the correspond-
ing slopes. We therefore expect that there exists ∆m such
that for all ∆k ≤ ∆m we should observe the same slope:

∆k ≤ ∆m ⇒ αk = αm .

Figure 3(a)) illustrates this.
In order to test whether we are measuring with sufficient

frequency or not, we compute the slopes for different val-
ues of ∆. For performing a rigorous analysis with real
data, one should ideally perform several measurements at
different frequencies. For these measurements to be com-
parable, they should be performed from the same monitor
towards the same destination set, and at the same time.
As this is not feasible in practice, we simulate from a real
measurement performed with some ∆original other mea-
surements with different, lower, frequencies. We do so by
taking into account only every n-th measurement, so that
the simulated interval ∆n will be equal to n · ∆original.
We are then able to compute the corresponding slope
αn. We use measurements performed at a high frequency
(∆original is equal to 1m 25s) and for a long time, so that
we are able to simulate measurements using a wide fre-
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(a) Real measurements
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(b) Model

Figure 1: Number of distinct ip links observed since measurement beginning. Each curve can be decomposed into two
parts: 1) initial fast growth at the beginning; 2) linear behavior which can be described by the slope α. The model
exhibits a qualitatively similar behavior to the empirical data.
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(a) Expected behavior
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(c) Erdős–Rényi model (n = 105,
m = 2 · 105), d = 300.

Figure 3: Impact of the measurement frequency. Each figure represents α (the slope of the plot of the number of
observed links as a function of time) as a function of the time interval between consecutive rounds ∆. For the model
simulations, we present results for 100 experiments. Each point is the average of the slope, and the errorbars represent
the 25- and 75-percentiles.

quency interval from them.
The model has no such parameter as ∆. However we

can assume that the topology changes, i.e. swaps, happen
at a constant rate. Let ∆ stand for the elapsed period
of time between two consecutive rounds if only one swap
between them is performed. Then we can simulate a lower
frequency in the model by performing n swaps between
each two consecutive rounds, which will represent a period
∆n equal to n · ∆. Conversely, we can simulate a higher
frequency by performing only one swap every n rounds,
which will represent a period ∆n equal to ∆/n.

Figure 3 shows the observed results. For the simula-
tion results, we observe that there is a high variability be-
tween results (the plot shows the average observed values,
as well as the 25- and 75-percentiles). This makes it dif-
ficult to draw a rigorous conclusion, but the observations
are compatible with the presence of a plateau for ∆ ≤ 1.
The median of the observed values, not presented here,
also strongly suggests the presence of a plateau. Then for
∆ ≥ 1, the slope decreases with ∆, showing that for these
parameters, a frequency smaller than one round each swap
is too slow to observe all changes. In the case of empir-
ical data, we again observe that, the longer the interval
between measurements, the smaller the slope α. This con-
firms our expectations in the case of ∆ ≥ ∆m. However,

in this case, there is no plateau at the beginning of the
curve, therefore we don’t know if the highest frequency is
optimal or not.

4 Conclusion

We studied the dynamics of the internet topology. Af-
ter an initial fast increase, the plot of the number of ob-
served links sustains a linear growth for extended periods
of time. Although the slope of this linear part could be
considered as an indicator of the speed of the observed

dynamics, we show that this slope depends intrinsically
on the measurement frequency. We have introduced a
methodology for testing whether a measurement is per-
formed fast enough to observe all changes that happen in
the underlying topology. Unfortunately it seems that it is
impossible to obtain this in real measurements (we used
measurements performed with a very high frequency and
it seems very difficult to improve this).

When comparing empirical observations to simulations,
we found that the variability between different experi-
ments performed with the same parameters is quite high,
making it difficult to understand the model’s behavior.
Future work should improve this, either by performing



massive numbers of simulations in order to obtain signif-
icant results, or by developing analytical results for the
model behavior.

Another important direction would be to find out if it
is possible to reproduce quantitatvely with the model the
observations made empirically. This would help in under-
standing the structure of the internet topology better.

Finally, another interesting direction consists in con-
sidering our problem as some kind of sampling problem.
Given a function f : T IME → S such that f(t) is the set
of all routes existing from the monitor to the destinations
at time t, represented in some space S, our measurements
only discover one route to each destination, and can be
represented by a function m(t) ⊂ f(t). Moreover, we can
only have access to discrete values of m(t), corresponding
to the moments where we make a measurement roudn,
which happens with a finite frequency. The question then
becomes: how to estimate f(t) from our partial sampling,
both in time and in the space S?
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