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Résumé — L’objectif de cet article est de comparer plusieurs méthodes de 1’état de I’art pour la reconstruction coparcimonieuse
de signaux, dans le contexte de la localisation de sources sonores. Nous évaluons les performances de cinq algorithmes de
reconstruction coparcimonieuse : l’algorithme de ” Greedy Analysis Structured Pursuit”, les minimisations ¢, et ¢ 2 jointe, ainsi
que les algorithmes ”Structured Analysis Iterative Hard Thresholding” et ”Structured Analysis Hard Thresholding Pursuit”.
Nous comparons également ces algorithmes a ’approche de parcimonie & la synthése, que nous résolvons par la minimisation
jointe ¢12 correspondante. Nous illustrons nos résultats dans le cadre d’une application a la localisation de sources sonores,
réalise sur des simulations de mesures de champs de pression acoustique.

Abstract — This work aims at comparing several state-of-the-art methods for cosparse signal recovery, in the context of sound
source localization. We assess the performance of five cosparse recovery algorithms: Greedy Analysis Structured Pursuit, ¢ and
joint #1 2 minimization, Structured Analysis Iterative Hard Thresholding and Structured Analysis Hard Thresholding Pursuit.
In addition, we evaluate the performance of these methods against the sparse synthesis paradigm, solved with corresponding
joint ¢1,o minimization method. For this evaluation, the chosen applicative showcase is sound source localization from simulated

measurements of the acoustic pressure field.

1 Introduction

Most real-life signals exhibit a so-called compressible struc-
ture, which means that, if represented in a suitable do-
main, most of the information they contain is inherently
low-dimensional. This premise has been extensively used
in inverse problems such as compressed sensing [1], where
we seek to restore the original signal € R™ from a
set of undersampled and/or noisy linear measurements
y=Max+e cR™” with m < n.

This underdetermined problem can be regularized by
a sparse prior, where we assume that the signal  may
be represented as a linear combination of a few column
vectors extracted from a dictionary ¥ € R™ % n < d,
weighted by some vector o € R? which has a small num-
ber k of non-zero coefficients compared to its dimension d.
A significant amount of theoretical and empirical research
has confirmed the usefulness of this, so-called sparse syn-
thesis approach.

Beside sparse synthesis, an alternative approach termed
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sparse analysis or cosparse signal model [2] has emerged
more recently. In this model, the product z = Qa, where
Q € RP*™ (p > n), is assumed to be sparse. The matrix Q2
is called the analysis operator, and may be, for example,
the finite difference operator. Although equivalent when
Q is an invertible square matrix (@ = ¥™'), the two
models differ as soon as p # d [3].

In order to emphasize the distinction, we say that the
signal @ is I-cosparse if | = p — ||Qx||o < d. The cosparse
model has received less attention than the synthesis model
so far. A foundation for cosparse signal modeling and
counterparts of most common sparse synthesis methods
can be found in [2, 4].

When the underlying sparse signal has a specific struc-
ture (e.g., when non-zeros of a follow some particular pat-
tern), it has been shown [5] that exploiting this structured
sparsity contributes to better signal recovery. Joint spar-
sity is one of these exploitable structure. In this case, the
complete signal o can be described as a concatenation of
sparse subsignals (o, s ... ay), where each a; is of the
dimension d/s, and which all share the same support (i.e.,
the indices of nonzero elements are the same for all «;).



Similarly, we assume the signal @ to be jointly cosparse,
if the indices of zero-elements (called cosupport) in all z;
(subvectors of z = Q) are equal.

Our aim is to exploit the cosparse framework for solving
a source localization problem, described in the following
section.

2 Sound source localization in a 2D
acoustic pressure field

We wish to localize one or more sound sources, in a bounded
two-dimensional space, from some linear measurements of

the acoustic pressure field p(7,t). At all non-boundary

locations, the acoustic pressure will approximatively obey

the acoustic wave equation:

0?p(F,t) 1 .
oz~ 2

Using the Finite Difference Method and second-order ap-
proximations, the equation (1) can be discretized straight-
forwardly. By taking into account the boundary and the
initial conditions, we can then design an appropriate op-
erator Q € R%*? such that Qp = 0 for all source-free
positions. Note that the operator € is very sparse, which
is a convenient property in terms of computational cost.
Since the number of sources (s) is usually much smaller
than the dimensionality of the discretized space, the sig-
nal p is cosparse, and even joint-cosparse if we assume
that sources are not moving. Hence, localizing the sources
amounts to the noiseless cosparse recovery problem:

0, if no source at 7
) = { (1)

f(7,t), if source at 7

recover p from y = Mp, s.t. |Qplo < d,

(2)

We can also note that in this square case, a simple matrix
inversion results in an equivalent synthesis model where
the dictionary ¥ = Q7' are the Green’s functions. We

and p is jointly cosparse.

will discuss the algorithmic disadvantages of usage of Green’s

functions later in the text.

3 Algorithms and methods

In general, finding an exact solution for the cosparse regu-
larization is known to be NP-hard [2].To circumvent this,
different approzimative methods have been proposed, out
of which we consider the following in our study!:

¢, (analysis) minimization Standard ¢; norm mini-
mization has been widely used for its property to produce
sparse solutions and its convenient convexity [6]. In the
context of the analysis model, it is used in the following
manner: p = arg min, ||Qpl|1, s.t. y = Mp.

IThe optimization algorithms are provided as a
public  domain  software  (under GNU  licence) at
http://people.rennes.inria.fr/Srdan.Kitic/

Joint ¢, 5 (analysis) minimization The minimization
of the ¢1 2 norm [7] is equivalent to a minimization of ¢;
norm on groups g; ; of §2p, which gather the variables
corresponding to each spatial index (7,j). The principle
is to promote a small number of non-zero normed groups
gi; 'n space, while not imposing a restriction within a
given group, in time. Spatial grouping of variables leads
to the following formulation of the method:

p = arg miny[|Z(p)[12 s.t. y = Mp 3

where Z(p) = devectz(ﬂp).
GRASP Asin the traditional sparse framework, cosparse
recovery can also be addressed by greedy approaches. We
retained here the use of GRASP - GReedy Analysis Struc-
tured Pursuit [8], an algorithm which is partially based on
Greedy Analysis Pursuit (GAP) [2]. It can be intuitively
seen as an approximation of the mixed norm minimization
described in previous paragraph (for the detailed descrip-
tion, the reader may consult the referenced papers).

Structured AIHT and AHTP Structured Analysis
Iterative Hard Thresholding and Structured Analysis Hard
Thresholding Pursuit are modified versions of Analysis It-
erative Hard Thresholding and Analysis Hard Threshold-
ing Pursuit algorithms presented in [2, 4]. We introduced
a change in the joint cosupport selection step, very sim-
ilar to the one used in GRASP, in order to make them
structure-aware and allow a fairer comparison with the
previous. Simultaneous HTP has been already developed
for the synthesis model [9], but, to our best knowledge,
this remained to be done for analysis IHT and HTP.

Joint ¢, » (synthesis) minimization For comparison
purpose, we include in our benchmark an algorithm based
on the synthesis paradigm for joint-sparse recovery, which
minimizes the mixed ¢; 2 norm. As noted in section 1,
the synthesis and the analysis models should here produce
the equivalent solutions ; however, the dictionary ¥ is not
sparse, which vastly increases the computational cost in
large-scale setting.

4 Experiments

The solution of a problem (2) depends on different param-
eters. In order to be comprehensive, we have tested the
recovery methods for various settings.

4.1 Simulation settings

The experiments were conducted in an artificial two di-
mensional space, modeled as an uniform rectangular grid

2devect reshapes the input vector w into a matrix U such that
rows of U correspond to a spatial dimension, while columns repre-
sent different time instances.



of size 20 x 20. The boundaries were modeled by Neumann
or Dirichlet boundary conditions ((di—:z = 0 or p = const,
respectively). The time span of the experiments (the “ac-
quisition” time) was either T, = 40 or T, = 100, whereas
the wave propagation speed was set to a constant value
¢ = 0.2 (homogeneous medium).

For the physical settings described above, the appro-
priate finite difference operators €2 were designed. The
corresponding Green’s function dictionaries ¥ were gen-
erated by taking the matrix inverse of the analysis oper-
ators. As expected, the numerical density (the number
of non-zeros) of these matrices is very different: the dic-
tionaries contain approximately 20% of non-zero elements
(depending on the boundary conditions) whereas for the
operators this percentage is around 0.004%.

The first series of experiments compared the perfor-

mance of recovery methods for the unit magnitude monochro-

matic sources. Each source was assigned the random phase
@ € [0,27]. The second series of experiments investigated
the localization of wideband sources. These were mod-
eled as white Gaussian zero-mean processes of variance
o3 =0.04.

We present the results in the form of empirical prob-
ability of accurate source localization, i.e. the number
of correctly identified sources given the total number of
sources in the experiment. The numbers of microphones m
and sources s were varied relative to each other, and both
were placed randomly in the spatial field. The z-axis in-
dicates the ratio between the number of microphones and
the total spatial dimension n, while the y-axis indicates
the ratio between the number of sources and the number
of microphones. The source locations were recovered after
estimating the pressure signal p, by localizing s largest (in
ly-norm sense) spatial positions of Qp.

4.2 Results

The first six diagrams in Figure 1 depict the recovery of a
lower frequency signal for the short acquisition time Ty;.
The presented diagrams are for the Neumann boundary
condition, but we obtained almost identical results for the
Dirichlet boundary as well. This trend continued through-
out all the experiments, meaning that the performance
was approximatively the same regardless the boundary
condition applied. The results (a) and (b) clearly indicate
the inferiority of SATHT and SAHTP methods which, in
addition, exhibited problems with the convergence. For
concision purpose, these algorithms were omitted in the
other experiments.

The diagrams (g), (h) and (i) show the significant im-
provement gained by extending the acquisition time to
Taz. This is only feasible in the cosparse case, since the
dictionary of the appropriate size is extremely memory
consuming (over 12Go in this setting). Hence, the results
for the synthesis algorithm are not presented.
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Figure 1: Probability of correct source localization for the
low frequency signal ((a) - (i)), the high frequency signal
((G) - (1)) and the wideband signal ((m) - (s))
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Figure 2: Average norm of the signal estimation error
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Figure 3: Average computation time

The following series ((j) - (1)) depicts the difference in lo-
calization performance when the signal frequency is higher
(f2)- It has become evident that increasing the frequency
leads to a decrease in performance. The final series of
experiments, (m) - (s), represents the algorithm’s perfor-
mance in the case of a wideband signal.

Important fact is that the source localization perfor-
mance is highly correlated with the success of a signal
recovery (the underlying signal’s estimation error). This
is illustrated in Figure 2 for the source localization exper-
iments 1(c) - 1(f).

Figure 3 illustrates the average computation time ver-
sus the relative number of samples for the four recovery
methods. All cosparse methods are dramatically faster
than the synthesis version of joint ¢; o minimization. We
observed that the more data becomes available, the slower
the synthesis version gets, due to more linear operations
needed per iteration. On the other hand, the analysis
version gets faster, since the overall number of iterations
becomes smaller.

5 Conclusion

We benchmarked several cosparse and one sparse recov-
ery algorithms, for the particular case of synthetic wave
signals.

Our experiments show that in the majority of cases,
standard ¢; norm minimization is the most robust recov-
ery method, whereas joint ¢; » minimization exhibits the
fastest convergence while being the second best in source
localization. GRASP is a moderately fast algorithm, but
its accuracy is considerably lower than the former two.
The structure-aware AIHT and AHTP algorithms are the
worst performing both in accuracy and processing time,
which is related to the inexact cosparse projection step
[10], based on the hard thresholding.

The synthesis and the analysis versions of joint £; » min-
imization perform the same in terms of accuracy, but the
cosparse version converges much faster due to the spar-

sity of analysis operator. Moreover, the cosparse methods
allow for longer acquisition time, which improves the re-
covery performance.

The signal frequency, the propagation speed and the
discretization are closely related and impact the perfor-
mance. The phenomenon is both physical and numerical,
as a consequence of the discretization method’s limita-
tions. Their interaction is out of the scope of this paper
and remains to be investigated.
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