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Résumé – Cet article présente une méthode d’identification en ligne de système linéaire avec régularisation `1. L’analyse de
convergence est effectuée pour des environnements non-stationnaires. Ce travail est une extension significative des algorithmes de
la famille non-negative LMS, à la fois dans la forme de l’algorithme et de l’analyse de convergence. Par ses performances et son
coût calculatoire réduit, l’algorithme présente des caractéristiques comparables à l’algorithme LMS tout en prenant en compte la
régularisation `1. Des simulations valident la méthode proposée et le modèle de convergence.

Abstract – This paper presents an online system identification method with `1-norm regularization. Convergence analysis
is performed for non-stationary environments. This work is a significant extension of the non-negative LMS in both aspects of
algorithm derivation and convergence analysis. According to its performance and computational cost, the proposed algorithm
performs similarly as the LMS algorithm but incorporates `1-regularization. Experiments validate the proposed algorithm and
its convergence analysis.

1 Introduction

Several applications have recently shown the need for
online sparse identification techniques. For instance, a par-
ticular driving force behind the development of such algo-
rithms is the channel estimation problem, due to the fact
that although the number of coefficients of the impulse
is large, only a small portion has significant values. Com-
pressive sensing theory provides a robust framework to
estimate sparse signals. Instead of the accurate count of
non-zero elements by `0-norm, which leads to NP hard op-
timization problems, other sparse-induced norms can be
used to overcome the difficulty caused by the `0-norm.
The use of the `1-norm constraint or regularization is a
popular choice.

Many approaches to solve the `1-norm related problem
have been described in the literature. Interior-point me-
thods transfer these problems to a convex quadratic pro-
blem [10]. Other recent methods include coordinate-wise
descent methods [7], iterated shrinkage methods [5], gra-
dient methods [9], gradient projection for sparse recons-
truction algorithm [6], and Bregman iterative method [1].

However, the above methods all operate in batch mode.
To identify sparse systems in an online way, several adap-
tive algorithms have also been proposed, including pro-
portionate adaptive filters which incorporate the impor-
tance of the individual components by weights, `0-norm
constraint LMS algorithm which approximates `0-norm
by a differentiable function [8], sparse LMS which uses
the sign function as the subgradient of the `1-norm [4].

The last one of these three algorithms directly deals with
system identification problems subject to `1-norm con-
straint. However, the convergence of subgradient method
is not guaranteed, even in batch mode, unless the step size
is carefully chosen.

Considering that the `1 term can be rewritten as the
sum of two non-negative vectors, the `1-regularized pro-
blem can be transformed into a minimization problem un-
der non-negativity constraints. Benefiting from this fact,
we can solve this problem in an online manner efficiently
using our previously proposed constrained system iden-
tification method, the so-called non-negative least-mean-
square algorithm [3]. In this paper, we derive this algo-
rithm and we propose models that characterize its mean-
weight behavior and its second-order behavior.

2 Presentation of the method
Consider an unknown linear system, parameterized by

the discrete response vector α∗ of length N , with input
x(n) and desired reference y(n). We intend to determine
the coefficients of the system by minimizing the mean-
square error with the sparsity-induced `1-norm

αo = argmin
α

1

2
E{[α>x(n)− y(n)]2}+ λ ‖α‖1 (1)

where the parameter λ provides a tradeoff between data
fidelity and solution sparsity. This `1-regularized problem
can be easily rewritten as a standard non-negative least-
square problem, by introducing twoN -length non-negative



vectors α+ and α− which satisfy the following relations
α = α+ −α−

with α+,α− � 0
(2)

where � is the component-wised symbol greater than or
equal. These relations are satisfied by α+

i = {αi}+ and
α−i = {−αi}− for all i = 1, 2, . . . , N , where {·}+ denotes
the positive-part operator defined as {x}+ = max{0, x}.
For simplicity, let us define a new vector α̃ of length 2N
by associating α+ and α− as follows

α̃ = [α+> α−>]>. (3)
We also define the extended input vector

x̃(n) = [x>(n) − x>(n)]>. (4)
The problem (1) can thus be reformulated with respect to
vector α̃ by

α̃o =argmin
α̃

1

2
E
{
[α̃> x̃(n)− y(n)]2

}
+ λ1>2N α̃

subject to α̃ � 0
(5)

with 12N an all-one vector with 2N elements. Although
the decomposition (2) is not unique, one can observe that
the `2-term is unaffected if we set

α+ ← α+ + s

and
α− ← α− + s,

where s � 0 is a shift vector. However such a shift in-
creases the regularization term in (5) by λ1>2Ns. It follows
that, at the optimum for the problem (5), either α+

i = 0
or α−i = 0, for i = 1, 2, . . . , N so that in fact α+

i = {αi}+
and α−i = {−αi}+.

Note that the problem (5) has been reformulated as a
system identification problem under non-negativity con-
straint with respect to α̃. Considering the stochastic gra-
dient approximation in which the correlation matrix Rx

and cross-correlation rxy are replaced by their instanta-
neous estimates x(n)x>(n) and x(n) y(n), we can now
solve this problem in an online manner based on our pre-
viously proposed non-negative LMS algorithm [3]

α̃(n+ 1) = (1− η λ) α̃(n) + ηDα̃(n) e(n) x̃(n) (6)
where η is the step size,Dα̃(n) is the diagonal matrix with
the ith diagonal element α̃i(n), and e(n) is the estimation
error such that e(n) = y(n)−α>(n)x(n). Using the rela-
tion (2), at each time instant the system coefficients α(n)
is obtained by

α(n) = α+(n)−α−(n) (7)
This algorithm is based on the NNLMS algorithm. Thus,
the variants of NNLMS can also be applied to improve its
performance [2].

3 Algorithm behavior modeling in
non-stationary environments

We now study the mean-weight behavior of the propo-
sed adaptive algorithm (6) in an arbitrary but quite gene-
ral time-variant environment. The input x(n) and the de-
sired output y(n) signals are assumed stationary and zero-
mean. The signal z(n) = y(n) − x>α∗ accounts for mea-
surement noise and modeling errors. It assumed that z(n)

is stationary, zero-mean with the variance σ2
z and statis-

tically independent of any other signal. The time-variant
environment is defined with respect to the system coeffi-
cients α∗ as

α∗(n) = α∗o(n) + ξ(n) (8)

whereα∗o(n) is a deterministic time-variant mean, and ξ(n)
is a zero-mean random variable with covariance Ξ = σ2

ξI
and independent of any other signal. This simple model
provides some information on how the performance of the
proposed algorithms is affected by a time-variant optimal
solution which consists of a deterministic trajectory and a
random perturbation. The model (8) leads to a tractable
analysis and permits inferences about the behavior of the
algorithms in time-variant environments by varying the
mean value α∗o(n) and the power σ2

ξ of ξ(n).

3.1 Mean weight behavior analysis

We define the weight-error vector with respect to the
mean coefficients α∗o(n) by

ṽ(n) = α̃(n)− α̃∗o(n) (9)

For the feasibility of the analysis, the following indepen-
dence assumption is considered in the derivation.

Assumption 1 (Independence assumption) The input si-
gnal x̃(n) is independent of the weight error vector ṽ(m),
for all time index m ≤ n.

Although not true in general, this assumption is commonly
used for adaptive filter analysis, and the analytical result
is usually not sensitive to this approximation. Now using
the relation (9) in the update equation (6), we get an
update equation for the weight-error vector

ṽ(n+1) = (1−η λ)ṽ(n)−∆(n)+ηDx̃(n)α̃(n)e(n) (10)

where ∆(n) = α̃∗o(n+ 1)− (1− η λ) α̃∗o(n). Note that the
estimation error can be expressed by

e(n) = z(n)− ṽ>(n)x̃(n) + ξ>(n)x(n)

Now taking the expectation of (10), neglecting the sta-
tistical dependence of x̃(n) and ṽ(n), observing that the
vector ξ(n) is zero-mean and independent of the other
signals, and using E {z(n)Dx̃(n)} = 0, yields the mean-
weight behavior model

E {ṽ(n+ 1)} =
(
(1− η λ)I − ηDα̃∗

o
(n)R̃x

)
E {ṽ(n)}

−∆(n)− η diag{R̃x K̃(n)} (11)

where K̃(n) = E{ṽ(n)ṽ>(n)} is the covariance matrix
of ṽ(n), and R̃x is the covariance matrix of x̃(n). Note
that the recursion (11) needs the second-order statistics
of ṽ(n). In order to simplify the model, we can make the
following assumption K̃(n) ≈ E{ṽ(n)}E{ṽ>(n)} in (11)
to provide a simplified model. The first order analysis of
adaptive filters is usually insensitive to this kind of ap-
proximation. As to be seen in experiments, the simplified
model will provide accurate behavior description.



3.2 Excess mean-square error analysis
Neglecting the statistical dependence of x(n) and ṽ(n),

and using the properties assumed for z(n) and ξ(n), yields
an expression for the mean-square error model

E
{
e2(n)

}
= E

{
(z(n)− ṽ>(n) x̃(n) + ξ>(n)x(n))2

}
= σ2

z + trace{R̃x K̃(n)}+ trace{Rx Ξ}

The excess mean-square error (EMSE), which is usually
more favorable in the performance analysis, is correspon-
dingly provided by

JEMSE(n) = trace{R̃x K̃(n)}+ trace{Rx Ξ} (12)

The term trace{Rx Ξ} is the contribution of the non-
stationarity of the system to the excess error caused by
random perturbation. In order to determine the excess
mean square error due to trace{R̃xK̃(n)}, we determine
a recursion for K̃(n), which is provided in Appendix due
to its complexity. This result can be used to study the
convergence behavior of E{e2(n)} and JEMSE(n).

4 Experiments
In order to validate the proposed algorithm and the mo-

dels, we considered non-stationary environments defined
by adding two types of time variant terms to stationary
coefficients, denoted by "nst.1" and "nst.2", respectively.
The system coefficients in these two environments are gi-
ven by

α
∗ (nst.1)
i (n) = α

∗ (st.)
i + ξi(n)

and

α
∗(nst.2)
i (n)=α

∗ (st.)
i +

|α∗ (st.)
oi |
10

sin

(
2π

T
n+2π

i− 1

N

)
+ξi(n)

whereα∗ (st.) in the above two expressions is the stationary
component defined by

α
∗(stat.)
i =


0.55− 0.1 i i = 1, . . . , 5

0 i = 6, . . . , 25

−0.1 (i− 25) i = 26, . . . , 30

In this first case, there is only one random perturbation
added to the stationary unconstrained solutions. Whereas
a deterministic sinusoidal time-varying trajectory is also
added in the second case. The period T of sinusoidal com-
ponents was set to 2500. The input signal was an AR
process given by x(n) = 0.5x(n − 1) + w(n), with w(n)
i.i.d. zero-mean Gaussian with variance σ2

w, adjusted to
obtain the desired input power σ2

x = 1. The step size was
set to η = 0.005 and regularization parameter was set to
λ = 0.06. The variance of modeling noise error z(n) re-
mained σ2

z = 0.01.
Experiment results are shown in Fig. 1. The blue and

red curves show the simulation results, and the theoreti-
cal predictions by (11) for the mean weight behavior, and
by (12) for the EMSE . Simulation results were obtained
by averaging 100 rMonte-Carlo runs. The mean weight
behavior curves are illustrated in Figs. 1(a) and 1(b).

For the second-order EMSE curves, in addition to these
curves, the variance σ2

ξ was varied using the values in
{0, 0.001, 0.005}. Corresponding EMSE curves obtained
from the theoretical model are illustrated in Figs. 1(c)
and 1(d). The simulation results conform with these curves
but are not shown for clarity. Effects of the deterministic
time-varying trajectory and random perturbations can be
clearly observed in these figures. Extra EMSE arises due
to tracking of the optimal solution variations.

5 Conclusion
In this paper, we studied the online system identifica-

tion problem regularized by `1-norm. This was performed
by extending the NN-LMS algorithm. Analytical beha-
vior model of the proposed algorithm was studied in non-
stationary environments. Future work may include explo-
ring variants of the algorithm to improve its performance.

Appendix : Recursion of K̃(n)

Post-multiplying (10) by its transpose, taking the ex-
pected value, and using the statistical properties of z(n)
and ξ(n), yields

K̃(n+ 1) = (1− ηλ)2 K̃(n)− (P 1(n) + P
>
1 (n))

− η (P 2(n) + P
>
2 (n))− η (P 3(n) + P

>
3 (n)) + P 4(n)

+ (P 5(n) + P
>
5 (n)) + (P 6(n) + P

>
6 (n)) + η2P 7(n)

+ η (P 8(n) + P
>
8 (n)) + η2P 9(n) + η2P 10(n)

+ η (P 11(n) + P
>
11(n)) + η (P 12(n) + P

>
12(n))

+ η2(P 13(n) + P 14(n) + P 15(n) + P
>
15(n)) (13)

where matrices P 1(n) to P 12(n) are calculated by

P 1(n) = (1− ηλ)E {v(n)} ∆>(n)

P 2(n) = (1− ηλ) K̃(n) R̃xDṽ(n)

P 3(n) = (1− ηλ) K̃(n) R̃xDα̃∗
o
(n)

P 4(n) = E{∆(n)∆>(n)}

P 5(n) = ∆(n)
(
diag{R̃x K̃(n)}

)>
P 6(n) = ∆E{ṽ>(n)} R̃xDα̃∗

o
(n)

P 7(n) = σ2
z (R̃x ◦ K̃(n))

P 8(n) = σ2
z E {Dṽ(n)} R̃xDα̃∗

o
(n)

P 9(n) = σ2
z Dα̃∗

o
(n) R̃xDα̃∗

o
(n)

P 10(n) = Q(n) ◦ K̃(n)

P 11(n) = E {Dṽ(n)} Q(n) Dα̃∗
o
(n)

P 12(n) = Dα̃∗
o
(n)Q(n) Dα̃∗

o
(n)

where in the above expressions

Q(n) = trace{R̃xK̃(n)}R̃x + 2R̃xK̃(n)R̃x.

These terms do not involve the random perturbation ξ(n)
on the weights. We now derive expressions for P 13(n)
through P 15(n). These terms convey the effect of the en-
vironment non-stationarity due to the random variations
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(a) mean behavior with α∗ (nst.1)
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(b) mean behavior with α∗ (nst.2)
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(c) 2nd-order behavior with α∗ (nst.1)
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Figure 1 – Algorithm behavior in non-stationary environments. First row : first order results with σ2
ξ = 0.005. Second row :

Second order results with various levels of σ2
ξ .

of system weights. These terms are expressed by

P 13(n)=σ
2
ξK̃(n) ◦ (R̃x trace{Rx}+ 2R′xR

′>
x )

P 14(n)=σ
2
ξ

(
α∗o(n)α

∗>
o (n)

)
◦(R̃x trace{Rx}+ 2R′xR

′>
x )

P 15(n)=σ
2
ξ

(
E {ṽ(n)}α∗>o (n)

)
◦(R̃xtrace{Rx}+2R′xR

′>
x )

with R′x = [Rx,−Rx]
>. Using the expected values P 1(n)

to P 15(n) in (13), we finally obtain a recursive analytical
model for the behavior of K̃(n). More detailed derivations
are similar to those of NN-LMS algorithm and its variants,
and can be referred to [2, 3].
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