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Résumé – Une seconde génération de détecteurs d’ondes gravitationnelles entrera prochainement en fonction avec l’objectif de mesurer pour
la première fois le faible signal gravitationnel provenant de la coalescence de binaires de trous noirs et/ou d’étoiles à neutrons. Dans cette
communication, nous proposons une méthode de recherche temps-fréquence alternative au filtre adapté habituellement utilisé pour détecter
ce signal. Cette méthode repose sur l’utilisation d’un graphe qui encode, en créant des liens entre les coefficients de la décomposition temps-
fréquence multi-échelle des données, l’évolution temporelle du signal ainsi que sa variabilité. Nous donnons une preuve de concept de l’approche
proposée.

Abstract – A second generation of gravitational wave detectors will soon come online with the objective of measuring for the first time
the tiny gravitational signal from the coalescence of black hole and/or neutron star binaries. In this communication, we propose a new time-
frequency search method alternative to matched filtering techniques that are usually employed to detect this signal. This method relies on a
graph that encodes the time evolution of the signal and its variability by establishing links between coefficients in the multi-scale time-frequency
decomposition of the data. We provide a proof of concept for this approach.

1 Context and motivation

Einstein’s theory of General Relativity introduces the concept
of a deformable and evolving space-time. The dynamics of
space-time is prescribed by Einstein’s equations. In the lineari-
sed gravity framework (space-time metric is a small perturba-
tion to the Minkowsian flat space-time metric), the Einstein’s
equations can be transformed into the wave equation. The me-
tric perturbation evolves and propagates like radiation with am-
plitude scaled as 1/r and travels with speed of light. These are
referred to as gravitational waves (GW) as they propagate as
disturbances of space-time itself [9]. GWs have never been di-
rectly detected so far, i.e., through the measurement of their
effect on a man-made instrument.

The direct search for GWs has made significant progress
with the advent of dedicated instruments based on high-precision
laser interferometry. A worldwide network of kilometric-scale
interferometric GW detectors including the US-based LIGO[1],
the French-Italian project Virgo[2] completed a first series of
science data collection over the past decade and will soon re-
sume to take data in an advanced (ten times more sensitive)
configuration. The first discovery of GWs is expected within
the decade ; this will open an entirely new view of the universe.

Those instruments are designed to sense the tiny space-time
strain distorsion inside the detector enclosure caused by GW

from distant astrophysical sources. Coalescing binaries of neu-
tron star and/or black holes (in short, CBCs for compact binary
coalescences) are one of the most promising sources of GW.
The last minutes before the binary merges coincide with the
emission of an intense burst of GWs. An accurate modeling
of the dynamics of the binary shows that the GW waveform is
a quasi-periodic signal, or chirp. The chirp frequency sweeps
towards high values according to a power law. The baseline ap-
proach is to use this morphological information to search the
data with matched filtering techniques (see e.g. [3]).

A large amount of computational resources is required to
complete the search because of the large volume of data and
physical signal parameter space to be searched and the impos-
sibility to accurately model the instrumental noise. The latter
issue implies that the analysis background has to be estima-
ted empirically by repeating the analysis many times (typ. 105)
on surrogate data obtained by shifting one or more detector
streams with non-physical time delays, thus removing any de-
tectable coincident GW signal.

When dealing with multiple detectors, the most sensitive sear-
ches analyze the data streams coherently using beam-forming
techniques. Coherent searches are very computationally deman-
ding. For CBC chirp signals, fully coherent matched filtering is
intractable with current computers.

In this article we propose a new wavelet-based method to



coherently search for CBC signals. It relies on the multi-scale
representation of CBC chirps using wavelet graphs (introduced
in Sec. 2). The method is integrated in the data analysis pipeline
Coherent WaveBurst that we present in the next section.

1.1 Multi-scale coherent transient searches
Coherent WaveBurst (cWB) [7] is one of the data analysis

pipelines developed for searching for GW transients (including
CBC signals). In a nutshell cWB extracts clusters of signifi-
cant coefficients from time-frequency decompositions that re-
sults from the coherent combination of the data. The resulting
clusters form candidate GW “events” if their “coherent” to “in-
coherent” signal energy ratio exceeds a threshold. We now de-
tail how the time-frequency representations is computed and
how the clusters are formed.

1.1.1 Multi-scale Wilson transform

In cWB’s scheme, the data (time series) are mapped into a
set of time-frequency representations by projecting onto Wil-
son bases [5] which are a variation of the well-known Gabor
bases. A Wilson basis is composed of linear phase cosine mo-
dulated wavelets distributed on a regular time-frequency lattice.
According to [8] a pair of in-phase and quadrature orthonormal
Wilson bases is constructed. Time-frequency maps are com-
puted by summing the powers in the in-phase and quadrature
transforms. A collection of maps is computed using the Meyer
scaling function [8, 5] with different scales (i.e., wavelet du-
ration or time scale). At scale a, the time-frequency lattice in-
cludes a+1 frequency subbands andN/a time bins whereN is
the number of data samples (typ., N = 220 i.e, 1024 s duration
sampled at fs = 1024 Hz).

The collection of time-frequency at all scales results in a
three-dimensional redundant representation that spans the t, f
and a variables. In the cWB scheme, the selected Na scales
are distributed dyadically, typ. log2 a ∈ {3, . . . , 8}. The total
number of (t, f, a) pixels is ∼ NaN ≈ 6× 106.

1.1.2 Transient extraction from Wilson transform

Significant pixels in the time-frequency-scale representation
are selected by thresholding. In each time-frequency maps, the
selected pixels are clustered using a nearest neighbors algo-
rithm. The time-frequency clusters obtained at all scales are
then combined using an algorithm that selects the principal
components. This procedure does not make any prior assump-
tion on the cluster geometry which can have an arbitrary shape
in principle.

Because of their specific phase evolution, chirp signals have
structured time-frequency representations with energy mostly
concentrated on the instantaneous frequency curve (see e.g.,
[6]) thus leading to clusters of significant pixels with a specific
shape. We propose here a new clustering algorithm that targets
that shape.

2 Wavelet graphs
In this section, we determine the time-frequency-scale curve

referred to as chirp path that collects the large wavelet coeffi-
cients associated to a given chirp signal. In presence of statio-
nary noise, the coefficients in the path are those that maximize
the signal-to-noise ratio locally.

We then construct a graph that combines the paths from a
family of chirp signals that covers a region of the parameter
space. This wavelet graph is a central piece of the clustering
algorithm we propose.

2.1 Chirp expansion in Wilson bases
For a given analysis frequency, we now determine which wa-

velet in the Wilson basis has the maximum coupling with the
considered chirp.

Instead of using discrete Wilson transforms with Meyer wa-
velets as cWB, we work in the continuous limit (where the
time, frequency and scale variables varies continuously in their
respective range) and use sine Gaussian wavelets to allow ana-
lytical calculations. The wavelet at time t0, frequency f0 and
scale a0 reads w̃0(f) = g̃(f − f0;σ0) exp−2πift0 where g(·)
is the wavelet envelope assumed to be

g̃(f ;σ0) = (2π)1/4
√
σ0 exp−π2σ2

0f
2. (1)

The scale parameters in the discrete/Meyer and continuous/-
Gaussian cases are approximately related by a0 ≈ fsσ0 where
fs is the sampling frequency.

The time-frequency map is defined as

ρ20 ≡ ρ2(t0, f0, a0) =

∣∣∣∣∫ df
w̃∗0(f)s̃(f)

Ñ(f)

∣∣∣∣2 (2)

where Ñ(f) is the noise power spectrum. We seek the time
t0 and scale a0 (or equivalently σ0) which maximizes ρ0 for a
given f0.

Chirps (including CBC signals) can be expressed as s̃(f) =
A(f) exp iΨ(f) in the Fourier domain. This allows us to re-
write Eq. (2) as an oscillatory integral. We then evaluate this
integral with the stationary phase approximation [4] assuming
slow variations of the integrand amplitude with respect to its
phase. We obtain :

ρ20 ≈
π|A(f0)|2

|π2σ2
0 − iβ|

exp

[
<π

2(t0 − τ(f0))2

π2σ2
0 − iβ

]
, (3)

where A(f) = (2π)1/4
√
σ0A(f)/Ñ(f), β = Ψ̈(f0)/2 and

τ(f0) = −(2π)−1Ψ̇(f0) denotes the inverse chirp rate and
group delay, resp.

The maximization of this quantity in t0 and σ0 at the given
frequency yields

ρ2(t̂0, f0, â0) =
fs√
π

|A(f0)|2

â0Ñ2(f0)
, (4)

with the maximum reached at t̂0 = τ(f0) and σ̂0 =
√
|β|/π

converted into â0 using the Gaussian to Meyer scale conversion
stated above.



We conclude that the chirp path is the following curve in the
time-frequency-scale space parametrized by the frequency f0

t̂0 = − 1

2π
Ψ̇(f0) â0 =

fs√
2π

√
|Ψ̈(f0)|. (5)

The last expression implies that signals with slowly (resp.
rapidly) varying frequency are best approximated by wavelets
of large (resp. small) scale as expected intuitively.

The chirp path essentially depends on the chirp Fourier phase
Ψ(·). For CBC chirp signals, this phase in the Newtonian ap-
proximation is [9]

Ψ(f) = ψc − 2πftc −
6πfLτ0

5

(
fL
f

)5/3

, (6)

where ψc is the final phase at coalescence time tc. The chirp
duration τ0 from the lower cut-off fL to maximum frequency
reads

τ0 =
5

256

(
c3

GM

)5/3

(πfL)−8/3. (7)

where the chirp mass M = (m1m2)3/5/(m1 + m2)1/5 de-
pends on the binary component masses m1 and m2.

Eqs. (5) thus lead to

t̂0 = tc − τ0
(
f0
fL

)−8/3
â0 =

4fs√
6 π

(
τ0
f0

)1/2(
f0
fL

)−4/3
.

Eqs. (5) provide approximations in the continuous limit. This
curve has to be discretized according to the (t, f, a) lattice adop-
ted by cWB. Discrete time and frequency coordinates read t̄0 =
bt̂0/δcδ and f̄0 = bf̂0δc/δ and are obtained using the time
sampling step δ = ā0/fs at the discrete scale log2 ā0 = blog2 â0c
where b·c is the round-off operator. This results in a finite and
ordered pixel collection with coordinates (t̄0, f̄0, ā0) we refer
to as chirp path.

2.2 Cover chirp space with a graph
In the above model of Eq. (6), the coalescence time tc and

component massesm1 andm2 are not known a priori and have
to be estimated from the data. For that reason, the chirp paths
associated to the time and mass parameter space are computed
and combined into the wavelet graph that collects the selected
pixels and their connection with the previous pixel in the path
(if any), referred to as ancestor. The last pixel of all paths is
marked as an end node. If a pixel occurs in two (or more) chirp
paths, the graph retains the list of all its ancestors.

Fig. 1 shows a typical wavelet graph computed for the mass
range m1,m2 ∈ [2.5, 10]M� (expressed in unit of solar mass)
and tc − tref ∈ [0, δmax] with δmax = amax/fs ≈ 250 ms with
the standard cWB settings (see Sec. 1.1.1). We fix the analysis
frequency bandwidth from fL = 40 Hz to the Nyquist fre-
quency.

Despite the reasonably large physical space covered (1275
different CBC signals were used in this computation), the wa-
velet graph has a moderate size (∼ 1000 nodes) and complexity
(. 10 ancestors per node).

FIGURE 1 – Typical wavelet graph computed for CBC signal
from binaries in the mass range m1,m2 ∈ [2.5, 10]M� (ex-
pressed in unit of solar mass. The top panel shows the distribu-
tion of selected pixel nodes in the (t, f, a) space. The bottom
panel shows the number of ancestors per node.

3 Clustering with wavelet graphs
We now explain how the graph introduced in the previous

section can be used to detect chirps in the data.
Assuming Gaussian noise, the detection of a known chirp si-

gnal can be performed optimally using matched filtering. The
matched filtering statistics can be re-expressed in the wavelet
domain. Assuming that the large coefficients of the chirp wa-
velet tranform are essentially contained in the chirp path p ob-
tained in Sec. 2.1 and that the selected wavelets in the chirp
path are nearly orthogonal, this results in :

`(p) =
∑

t,f,a∈p

ρ2(t, f, a), (8)

where the summation runs from the path start node (no ances-
tor) to the end node.

When the chirp parameters are unknown, this statistics has to
be maximized over the admissible parameter space P , namely
maxp∈P `(p). This maximization amounts to finding the chirp
path in the wavelet graph that captures the largest amount of
energy. That can be efficiently performed using combinatorial
optimization techniques such as dynamic programming with a
computing cost scaling linearly with the size of the graph.

We divide the data stream into successive segments and com-



FIGURE 2 – Application of the proposed clustering method to a typical noisy CBC signal withm1 = 8.6M�,m2 = 3.3M� using
the wavelet graph in Fig. 1. The resulting cluster is shown with red dots at the corresponding scale. For comparison, the cluster
extracted by the standard method in cWB is shown with blue dots.

pute their Wilson transform. We assign to the graph node the
values of the corresponding coefficients in the Wilson trans-
form, apply dynamic programming to extract the “best” chirp
path and move to the next segment. Chirp paths with ` excee-
ding a pre-defined threshold are retained and given to cWB as
interesting clusters for further processing.

4 Concluding remarks
As an illustration, Fig. 2 presents the result of the wavelet

graph clustering method on a CBC chirp signal in Gaussian
white noise at SNR ∼ 20 (linear scale 1). The cluster being
continuous across times, frequencies and scales by design, it
collects marginally significative pixels (because of noise fluc-
tuations) which are lost otherwise in the standard cWB scheme.

On average, the current version of cWB clustering algorithm
takes 25 % of the whole computing time. The computing cost
of the proposed method is four times slower, which lies in the
acceptable range for production. On-going simulations will al-
low a full evaluation, beyond the present proof of concept.
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1. Here, we use the so-called “network” SNR which is a global constrast
measurement applying to the signal received by all three detectors in the array.
The chosen value is approximately twice larger than the 5-sigma detectability
limit.
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