Integrating RJMCMC and Kalman filters for multiple object tracking
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Résumé — Dans cet article, nous proposons d’intégrer le filtre de Kalman a un échantillonneur de Monte Carlo par chaine de Markov 2 sauts
réversibles (RIMCMC) pour améliorer la procédure d’optimisation dans le cas de suivi d’objets multiples. Nous proposons I’utilisation d’un
noyau de perturbation dédié qui utilise le filtre de Kalman pour générer de multiples objets dans une seule itération. Nous démontrons que ce
noyau permet de réduire considérablement le temps de mélange de la chaine de Markov, par rapport a 1’échantillonneur RIMCMC standard.
Nous montrons les résultats obtenus sur deux séquences biologiques synthétiques et deux séquences simulées de télédétection sur la ville de
Toulon, France.

Abstract — In this paper, we propose to integrate the Kalman filter with the reversible jump Markov Chain Monte Carlo (RIMCMC) sampler
to improve the optimization procedure in the case of multiple object tracking. We propose the use of a dedicated perturbation kernel that uses
the Kalman filter to generate multiple objects in a single iteration. We demonstrate that this kernel reduces considerably the mixing time of
the Markov chain, as compared to the standard RIMCMC sampler. We show results on two synthetic biological sequences and two simulated

remotely sensed data sets of the city of Toulon, France.

1 Introduction

Multiple object tracking is required in many vision applica-
tions such as traffic control, security and surveillance systems
and is increasingly used in biological settings due to recent de-
velopments in microscopy techniques. Object tracking in video
sequences requires the processing of a large amount of data and
is generally time-expensive. The applications can be broadly
divided into two groups : classical applications where the ob-
jects exhibit an independent behavior w.r.t. other objects (i.e.
boats can be considered independent from cars on a road) and
applications in which objects interact with each other (i.e. na-
tural systems, road traffic, etc.). Moreover, the multiple object
tracking problem becomes even more challenging when the ob-
jects are identical. Different techniques for solving the tracking
problems in vision are available in literature. Luo et al. [7] of-
fers a comprehensive review.

Recently, we have proposed a new spatio-temporal marked point
process model for tracking small, rigid objects in high resolu-
tion images [2]. We show very good detection and tracking re-
sults for synthetic biological data as well as remotely sensed
sequences. The model is based on defining a dedicated energy
function that is highly non-convex. The solution is found by mi-
nimizing this energy function using a suitable batch-optimization
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scheme based on RIMCMC sampler. This approach is motiva-
ted by the low temporal frequency of the sequences (< 1Hz).
In this paper we propose to combine the Markov chain dyna-
mics with a sequential filtering technique, i.e. the Kalman fil-
ter, to obtain a hybrid optimization procedure that integrates
the strengths of both approaches. More precisely, we build a
new perturbation kernel that uses the Kalman filter to generate
a sequence of objects in a single interation. We apply this opti-
mization procedure to minimize the energy of the model descri-
bed in [2]. We show results on biological and remotely sensed
image sequences and compare our sampler with the sampler
previously proposed in [2].

The paper is organized as follows : section 2 briefly presents the
model used for multiple object tracking. We present the sam-
pler in section 3 and show results in section 4. Finally, conclu-
sions are drawn in section 5 and future work is outlined.

2 Multiple object tracking model

The 3D image cube is modeled as a bounded set £ = [0, I}, |
[0, Iy,...] X {t1,...,t7} and denote x = (cp, Cw, t, a, b,w, )
an ellipse of I x M, where (cp, ¢,y) represents the location
of the ellipse within the image, ¢ is the frame number, a €
[@min, @maz) and b € [byin, binaz] denote the length of the
semi-major axis and semi-minor axis respectively, w € [0, 7]
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FIGURE 1 — The energy term used for detecting and tracking
objects. Further details can be found in [2].

is the orientation of the ellipse and [ is its label. A configura-
tion of ellipses x is an unordered set of ellipses in K x M :
X = {x1,...,Tpx)}, T € K x M, where n(x) = card(x)
denotes the number of ellipses in the configuration. All ellipses
with the same label form one trajectory. Finally, a marked point
process X is a collection of random configurations on the same
probability space (2, .4, P) [9].

The Gibbs family of processes is used to define the energy of
the process as follows :

L —Up(X,Y) (1)

fo(X =X[Y) = o) P

where :

- X={x1UxaU---UxyU---Uxr} is the configuration
of ellipses, with x¢ being the configuration of ellipses at
time ¢ ;

— Y represents the 3D image cube;

— @ is the parameter vector ;

- c(0]Y) = [, exp~Y0XY) y(dX) is called the normali-
zing constant, with ) being the configuration space and
() being the intensity measure of the reference Poisson
process ;

- Up(X,Y) is the energy term.

Using the MAP criterion, the most likely configuration of el-
lipses that corresponds to the global minimum of the energy is
found as follows :

X € argmax fo(X = X[Y) = arg min[Up(X, Y)]. ()

The parameter vector § = {0c., 0int } is composed of the pa-
rameter vectors for the external and internal energy terms, na-
mely 0.,; and 6;,; respectively. An efficient way to learn this
parameter vector § from the data sets can be found in [2]. In
this paper, we used the energy term which is depicted in Figure
1 and described in detail in [2] for multiple object tracking.

3 Optimization

The energy depicted in Figure 1 is clearly not convex. It is
easy to construct examples that have two virtually equal mi-
nima, separated by a wall of high energy values. The main rea-
son that drives the energy to be non-convex is the dependence
caused by the high-order physical constraints of the model.
The target distribution is the posterior distribution of X, i.e.

m(X) = f(X|Y), which is defined on a union of subspaces
of different dimensions. We use the reversible jump Markov
Chain Monte Carlo (RIMCMC) sampler, developed by Green
[4], to sample the posterior distribution. RIMCMC is a widely
known optimization method for non-convex energy functions
and an unknown number of objects [8]. It uses a mixture of
perturbation kernels Q(-,-) = > pm@Qm(-,), Do, Pm = 1
and [ Q. (X, X")u(dX’) = 1, to create tunnels through the
walls of high energy.

We use simulated annealing [8] to find a minimizer of the energy
function. The density function in eq. 1 can be rewritten as :

1 _ U’IQ (X.Y) (3)
Clemp, (1Y) T 0

where T'emp; is a temperature parameter that tends to zero
when 7 tends to infinity. If T'emp; decreases in logarithmic rate,
then X; tends to a global optimizer of fy ;. In practice however,
a logarithmic law is not computationally feasible and hence, a
geometric law is used instead.

A mapping R,,(-,-) : C x C — (0, 00), called the Green ratio,
is associated to each of these perturbation kernels. This ratio is
designed in order to ensure the balance of the Markov chain and
obtain its ergodic convergence towards the desired distribution.
At iteration i, the proposition X; = X’ is accepted with proba-
bility o, = min(1, R, (X, X’)). Otherwise X; = X [8].
Therefore, the efficiency of this iterative process depends on
the variety of the perturbation kernels used. We propose be-
low a new perturbation kernel that it specifically adapted to the
multiple object tracking problem.

foi(X =X[Y) =

3.1 Birth and Death using a Kalman filter

As opposed to the classical birth and death kernel, we pro-

pose a problem-specific birth and death kernel that uses a Kal-
man filter within the birth step. This allows us to create track-
lets (i.e. ellipses with the same label in consecutive frames) in
a single step. The Kalman filter dates back to 1960, when R. E.
Kalman described a recursive solution to the discrete-data li-
near filtering problem [6]. This filter became very popular and
multiple variations and extensions of it have been designed to
adjust the filter to diverse problems [1, 5].
The Kalman filter (KF) is applied to estimate the state of an
object, where the state is assumed to be linearly Gaussian dis-
tributed in time. The continuity of the motion serves as a strong
prediction criterion in object tracking. To generate new track-
lets, we model the system as linear Gaussian, with the state
parameters of the Kalman filter given by the ellipse location,
its velocity, its size and its orientation. For a single object, the
discrete-time dynamic equation is given by :

KXtJrl == F . KXt (4)

where the state vector is given by KX = [c,, ¢y, ¢z, €y, a, b, w],
where ¢, and ¢, are the predicted coordinates of the ellipse, ¢,
and ¢, are the velocities in the respective direction, a and b
are the semi-major and semo-minor axis of the ellipse and w is
the orientation ; and F' is the a priori known transition matrix,



where we set dt = 1 in our experiments, as given below :

&

o}

Il
cococococowr
cocococoro
coocorol
cocoro&0o
coroooo
omroocooo
~oooocoo

o

I

cococor
coowro
cococowr
cocoro
cowroo
oroooO
=N =N=N=]

The measurement vector M is obtained using a simple thre-
sholded frame differencing technique to identify moving ob-
jects in every frame. At each time frame, we identify the fore-
ground blobs for which we obtain their center location, width,
height and orientation. We then construct a measurement vec-
tor M, that can be injected into the measurement model of the
KF. Accordingly :

M, =H -KX; +q &)

with ¢¢ ~ N(0,R¢) being white Gaussian noise with cova-
riance matrix R; and H is the measurement function. Since
we assume a known model for the dynamics of an object, we
can use the KF to predict the position of the object in the next
frame. The KF state prediction KX, | and the state covariance
prediction P, are defined by :

KX,.1=F-KX, Py,=F -P,-FT (6)

where KAXt and li't are the estimated state vector and error
covariance matrix at time ¢ respectively.
Then, the KF update step is as follows :

1

Kiy1 =Py - H' (H Py -H" +Ryyy) (7
KAXt+1 =KX;+1 + Kit1 (Mt+1 -H; 'K_Xt+1) (®)
P =(1-Kpy1 -H) Py )

The KF starts with the initial conditions given by Ky and Py.
K, is called Kalman gain and defines the updating weight bet-
ween the new measurements and the prediction from the dyna-
mic model.

The birth and death using a Kalman filter kernel first chooses
with probability p, and p; = 1 — p, whether an object u should
be added to (birth) or deleted from (death) the configuration. If
a death is chosen, the kernel selects one object v in X and pro-
poses X’ = X \ u. However, if a birth is chosen, the kernel
generates a new object uw and proposes X' = X U u. If the
birth is accepted, a Kalman filter is initialized to the location,
size and orientation of u. The state at time ¢ is updated using
the measurements M, and then a prediction step is executed.
The kernel generates a new object v based on the state vector
KX, of the KF and proposes X" = X’ U v. The state of the
filter is updated using My and a new prediction is made. The
process is repeated until a birth proposal is rejected. Note that
the standard birth and death kernel is a particular case of the
proposed perturbation kernel, when the proposal X" = X' U v
is rejected.

3.2 Non-jumping transformations

Non-jumping transformations are transformations that do not
modify the number of objects in the configuration. Such trans-

FIGURE 2 — Detection and tracking results on two synthetic
biological sequences. The sequences are generated using the
Icy software [3]. Left : Tracking results on the first image se-
quence up to frame 50. Right : Tracking results up to frame 50
of the second image sequence.
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FIGURE 3 - Energy evolution with the number of iterations for
the two samplers for the synthetic biological sequences shown
in Figure 2. The proposed sampler is shown blue.

formations randomly select an object u in the current configu-
ration and then propose to replace it by a perturbed version of
the object v : X’ = (X \ w) U v. Translation, rotation and scale
are standard examples of such transformations.

4 Experimental results

We have verified the balance of the newly introduced per-
turbation kernel by successfully simulating Poisson distribu-
tions of various intensities. In this paper, we apply our pro-
posed optimization scheme for the detection and tracking of
objects on two distinct data sets. The first one consists of two
sequences of synthetic biological images of cells. We genera-
ted these sequences using the Icy software ([3]). The second
data set consists of two simulated remotely sensed image se-
quences of boats with a spatial ground resolution of 0.5 me-
ter. We compare the proposed optimization scheme with the
RIMCMC sampler proposed in [2]. The performance of each
sampler is evaluated based on the number of iterations neces-
sary until convergence as well as the final energy level reached.

4.1 Results on synthetic benchmark data sets

Each sequence has 50 frames with a size of 512 x 512 pixels.
The first sequence contains approximately 10 objects per frame,



FIGURE 4 — Detection and tracking results on two sequences of
simulated satellite images of Toulon. The image sequences are
by courtesy of Airbus Defence & Space, France. Top : Tracking
results on the first image sequence up to frame 50. Bottom :
Tracking results up to frame 150 of the second image sequence.

while the second sequence contains approximately 30 objects
per frame. Objects can appear or dissapear at any time and lo-
cation. The objects exhibit a directed uniform motion. The de-
tection and tracking results are shown in Figure 2. The perfor-
mance of the two samplers is presented in Figure 3. The num-
ber of iterations necessary for the proposed sampler to converge
is significantly smaller than that of the sampler presented in [2].

4.2 Results on simulated remotely sensed data

In this case, the interest lies in detecting and tracking the
moving boats in the scene. The first sequence consists of 50
frames each of 670 x 221 pixels and contains 3 moving boats.
The second sequence consists of 150 frames each of 451 x 251
pixels. A single boat is moving throughout this sequence. The
detection and tracking results are shown in Figure 4 and the
performance of the two samplers is presented in Figure 5. The
proposed sampler needs a significantly lower number of itera-
tions until convergence. The birth and death kernel using a Kal-
man filter not only allows the generation of multiple ellipses in
a single iteration, but the ellipses are similar in size and orien-
tation and better reflect the real objects in the scene, which re-
duces the necessary number of both jumping and non-jumping
perturbations.

5 Conclusions

In this paper we have proposed a new optimization scheme
that integrates the Kalman filter into a batch-optimization fra-
mework based on the RIMCMC sampler and used it in the
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FIGURE 5 — Energy evolution with the number of iterations for
the two samplers for the two simulated sequences of remotely
sensed images. The proposed sampler is shown blue.

framework of spatio-temporal marked point processes to de-
tect and track multiple objects in image sequences. This hy-
brid optimization scheme benefits from the strengths of both
approaches. The sequential filtering is used to build more mea-
ningful perturbations which leads to a reduced number of ite-
rations necessary until convergence, while the batch approach
ensures the convergence towards a strong minimum and by-
passes the typical problems of sequential approaches. We have
shown results on two very different data sets in biology and re-
mote sensing. We demonstrated the superiority of our proposed
sampler w.r.t. the sampler proposed in [2]. The good perfor-
mance of the proposed sampler shows the potential of hybrid
optimization schemes which we plan to further investigate.
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