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Résumé –Ce papier présente la description et l’application d’une décomposition modale basée sur la transformée en ondelettes. Une fois la
décomposition réalisée, les composantes sont séparément extrapolées, donnant lieu à une prévision sur l’évolution du signal. La qualité de la
prévision est évaluée via une procédure de prévisions rétroactives.Pour l’indice climatique ENSO, la décomposition fournit quatre composantes
correspondant à des pseudo-périodes d’environ21, 31, 43 et61 mois respectivement. La reconstruction détecte97% des événements El Niño/La
Niña des 65 dernières années.

Abstract – This paper consists of a description and an application of a mode decomposition performed through a wavelet transform. Once the
decomposition is performed, the components are separately smoothly extrapolated, which leads to a forecast of the signal. The quality of the
forecast is assessed through a hindcast (running retroactive probing forecasts) procedure. For the ENSO time series, the decomposition leads to
four components corresponding to pseudo-periods of about21, 31, 43 and61 months respectively and the reconstruction recovers97% of the
major El Niño/La Niña events of the past 65 years.

1 Introduction

The aim of this work is to provide and apply a wavelet-based
mode decomposition (introduced in [13]) and use it to develop
a simple yet powerful forecasting method. The basic idea is to
extract quasi-periodic oscillating components from the conti-
nuous wavelet transform of the original signal but, unlike the
Fourier transform, the amplitudes are not constant anymore:
they vary smoothly with the abscissa, as in the empirical mode
decomposition ([4, 8]). This allows to drastically decrease the
number of terms needed to rebuild accurately the signal and to
take into account only the terms carrying most of the informa-
tion. By doing so, the reconstructed signal resolves the large
variations of the original one without taking the noise intoac-
count. Then, the extracted components are smoothly extrapo-
lated using Lagrange polynomials, such a process leads to an
extrapolation of the reconstructed signal which stands fora fo-
recast of the raw signal. The forecasting procedure is finally
assessed using hindcasts (running retroactive probing predic-
tions) from which error bars for the predictions are derived.

We use the abovementioned procedure to study real-life data.
For that purpose, the El Niño Southern Oscillation (ENSO)
index is analyzed. ENSO is a climate pattern induced by sea
surface temperature anomalies (SSTA) in the tropical Pacific
Ocean. An anomalous warming in the SSTA is known as El
Niño, while an anomalous cooling bears the name of La Niña.
ENSO is well recognized as the dominant mode of interannual
variability in the tropical Pacific Ocean. It affects the atmos-
pheric general circulation which transmits the ENSO signalto
the other parts of world ; these remote effects are called “te-
leconnections” and induce changes in the occurrence of se-

vere weather events, which dramatically affect human activities
and ecosystems worldwide [1, 5, 7, 17]. Therefore, short-term
ENSO predictions are of first importance for seasonal climate
forecasts, in order to help governments and industries to plan
actions before the occurrence of these phenomena.

As a result of the analysis, it turns out that the signal can be
decomposed into four components of periods of about21, 31,
43 and61 months with smooth time-varying amplitudes. The
reconstructed signal recovers30/31 of the El Niño/La Niña
events that occurred from 1950. These components are extra-
polated to perform several years forecasts of the ENSO index,
in the same spirit as in [16]. The prediction skills of this method
are tested through a hindcast procedure. It appears that three
years hindcasts allow to recover up to78% of the El Niño/La
Niña events of the last50 years. Compared to other methodo-
logies, our forecasting method is particularly competitive for
predictions exceeding 6 months, since the variability of ENSO
is mainly driven by the four mentioned periods. The next La
Niña event should start early in 2018 and should be followed
by a strong El Niño event in the second semester of 2019.

2 Method

2.1 Wavelet-based mode decomposition

The wavelet-based mode decomposition provides a simple
yet powerful method for decomposing a signal into a finite
number of components [13]. Each component is associated to
a mean frequency but, unlike the Fourier transform, this de-
composition does not lead to pure cosines. A component is



not identified with a fixed amplitude or frequency ; they slowly
evolve through time. A Fourier series decomposes a periodic
signal into an infinite sum of sine and cosine functions ; from
a practical point of view, a signalf is approximated by a fi-
nite sum ofK cosines,f(t) ≈

∑K

k=1
ck cos(ωkt+ φk), where

the coefficientsck are amplitudes andωk frequencies. Howe-
ver, such a decomposition often leads to a sum with too many
terms. The idea underlying the wavelet-based mode decompo-
sition is to decrease the number of terms by considering the
amplitudesck as functions oft. This property relies on the
fact that wavelets provide a good local time-frequency reso-
lution. One thus tries to have the following decomposition :
f(t) ≈

∑J

j=1
Cj(t) cos(ωjt + φj), whereJ should be much

smaller thanK (see equality (3) for the exact formula). For a
detailed description of the theory of continuous wavelet trans-
forms, the reader is referred to [3, 10].

The wavelet used in this study is the one used in [13], which
is similar to the Morlet wavelet and is well-suited for frequency
analysis. With such a wavelet, the complex wavelet transform
of a real signalf (belonging to the spaceL2(R)) is defined as

Wf(a, t) =

∫
f(x)ψ̄(

x− t

a
)
dx

a
, (1)

whereψ̄ is the complex conjugate ofψ, t ∈ R stands for the
location parameter anda > 0 denotes the scale parameter. Let
us note thatt is also referred as the time parameter in the follo-
wing.

The decomposition used in this analysis can be summed up
as follows. First, a wavelet spectrumΛ is associated to the si-
gnalf [14] :

Λ(a) = E|Wf(a, ·)|,

whereE denotes the mean with respect to the time parameter.
The scalesa1, . . . , aJ for whichΛ reaches a maximum are kept
(let us recall that a scale (or a period) behaves as the inverse of
a frequency, see e.g. [3, 10]). The signalf is then decomposed
in the following way,

f(t) = f̂0(t) +

J∑
j=1

f̂j(t), (2)

with
f̂j(t) = |Wf(aj , t)| cos (argWf(aj , t)) (3)

if j ≥ 1 andf̂0(t) = f(t)−
∑J

j=1
f̂j(t).

2.2 Forecasting procedure

Once the decomposition off has been performed using equa-
tion (2), the signal

∑J

j=1
f̂j can be seen as an approximation of

f in terms of oscillatory components. The reconstructed signal
f̂ used below has the following form (see [13]),

f(t) ≈ f̂(t) =

J∑
j=1

Cj(t) cos(ωjt+ φj), (4)

whereωj is the mean frequency ofcos (argWf(aj , t)) (and
is proportional to1/aj). This reconstruction̂f depends onJ

amplitudes,J frequencies andJ phases. Let us remark that the
amplitudeCj , corresponding to a given frequency, is a func-
tion of t ; this allows to drastically decrease the number of
components compared to the Fourier transform. Note that the
terms “period” and “frequency” are used interchangeably inthe
following. Also, the periods detected are also called “pseudo-
periods” due to the way theωj ’s are computed.

Each component can be extrapolated in the following way.
Under the hypothesis stated above, ifT is the abscissa of the
last available data, the only unknown parameter is the ampli-
tudeCj(t) (1 ≤ j ≤ J), which is supposed to vary smoothly
on [0, T ] ; its time-varying values can therefore be extrapolated
(for t > T ) using Lagrange polynomials. The computation was
based on the last4 available values of the signal (i.e. corres-
ponding tot = T − 1, T − 2, T − 3 andT − 4). This number
4 was chosen in order to minimize the root mean square error
between the real signal and the hindcasts (see below) ; howe-
ver, altering this parameter (e.g.2 or 3) does not significantly
modify the results and excessively increasing it leads to uns-
table extrapolations. Summing the extrapolated values related
to each component defines the forecast off ; more precisely, it
corresponds to a forecast of the reconstructed signalf̂ .

Let us remark that in the case of the ENSO time series, the
mean frequencies are well-known, as discussed in section 3
(see [12, 14, 9]).

2.3 Hindcasts and estimation of errors

Such a forecast needs to be properly cross-validated. An in-
tuitive idea is to look at the firstt0 (t0 < T ) data elements, then
produce a retroactive forecast and compare the so-obtainedpre-
diction to the original signal. One can then perform the same
method again, but witht0 increased by1, and so on until the
end of the time series. It is important to notice that, in thisway,
no information past the date from which a prediction is issued
is used.

More precisely, the efficiency of the forecasts was tested
with probing hindcasts, computed as follows.

1) One considersft0 (the time seriesf up to the time point
t0), computes its wavelet spectrum and looks for the scales
for which it reaches a maximum. The reconstructed signal
f̂t0 is computed using equation (4).

2) Starting from the last four values of̂ft0 , the retroactive
forecast time seriesFt0(t0 + 1), . . . , Ft0(t0 + k), ranging
from the abscissat0 + 1 to t0 + k are obtained using the
method described in the previous section. In particular, the
a priori unknown local future values (abscissa greater than
t0) are not used to obtain the values ofFt0 .

3) The initial condition is increased by1 and steps1− 3 are
repeated.

4) Thek-months lead hindcast associated to the initial condi-
tion t0, denoted byFt0,k, is the signalFt0(t0+k), Ft0+1(t0+
1 + k), . . . , FT−k(T ) whereT is the abscissa of the last
available data in the original signal.

In order to measure the efficiency of our method, we procee-
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FIGURE 1 – Left : modulus of the wavelet transform (values
range from0 (dark blue) to1.2 (dark red)) and wavelet spec-
trum. Four peaks are detected.

ded in the following way. Since the difference betweenf(t0 +
k) andFt0(t0 + k) is the error of thek-months prediction at
timet0+k issued at timet0, the hindcasts were used in a cross-
validation procedure. The root mean square error (RMSE) bet-
weenf and the hindcastFt0,k, was used as a measure of the
accuracy of the forecast atk data as lead time and led to error
bars. Finally, the Pearson correlation coefficient betweenthese
signals was also computed.

3 Application to the ENSO index

The procedure described above is now applied to a real-
life signal. The example presented here is the decomposition
and forecast of the Niño 3.4 index (ERSST.V3B SST Niño 3.4
time series provided by the Climate Prediction Center), which
consists of monthly-sampled SSTA (in Celsius degrees) in the
Eastern Pacific Ocean recorded from Jan 1950 to Dec 2014.
Over the last two decades, many models have been proposed
for forecasting the ENSO phenomenon (seehttp ://iri.columbia.edu-
/climate/ENSO/currentinfo/QuickLook.html) by focusing on the
Niño 3.4 index [11, 18, 15, 19], generally with lead times of up
to one year.

The wavelet transform of the signal and its wavelet spectrum
are plotted in Fig. 1. The spectrum displays four peaks cor-
responding to pseudo-periods of20.9, 30.6, 43.28 and61.21
months respectively (note that a weak peak is also detected
around7 months but is considered as noise). Then, the four
corresponding components are computed and rescaled to mini-
mize the RMSE between the reconstructed signal and the ori-
ginal series (see Fig. 2). It can clearly be seen that the strongest
El Niño and La Niña events occurred when all the components
simultaneously reached a peak.

The reconstruction of the Niño 3.4 signal, denoted by m-
Niño 3.4, is computed as the sum of the four components men-
tioned above and is plotted in Fig. 3. The Pearson correlation
between these two signals is0.894 and the RMSE is0.366◦C,
which confirms that m-Niño 3.4 allows to recover most of the
variability of the original signal. Let us note that if the com-
ponent associated to the 7 months period is added, the results
remain almost unchanged (the RMSE is0.336◦C and the cor-
relation is0.912). Using the definition of an El Niño/La Niña
event of the Climate Prediction Center (threshold of+0.5◦C
(El Niño) or−0.5◦C (La Niña) reached by at least five conse-
cutive months),30/31 major events are recovered by m-Niño
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FIGURE 2 – The four components extracted from the Niño 3.4
time series, corresponding to the periods of20.9, 30.6, 43.28
and61.21 months respectively. The red (resp. blue) line indi-
cates when the strongest El Niño (resp. La Niña) event reached
its peak. The green parts are the forecasts of the components
for the next five years.
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FIGURE 3 – Niño 3.4 (black) and m-Niño 3.4 (green) and the
forecast of m-Niño 3.4 for the next five years. The error bars
were estimated using the RMSE related to the hindcasts. The
beginning of the El Niño and La Niña episodes in the Niño 3.4
index are indicated with red and blue arrows respectively. The
undetected El Niño event is pointed by a red circle.

3.4 (see Fig. 3).
As shown in Fig. 3, a forecast of the Niño 3.4 time series is

issued, where the errors bars are computed through the RMSE
of the hindcasts of the corresponding lead time. Let us note that
92% of the extreme events that occurred in the last 50 years can
be detected 1 year in advance, and still87% (resp.78%) can be
recovered 2 (resp. 3) years in advance.

In comparison with other Niño 3.4 forecasting methodolo-
gies [2, 6, 18, 19], our approach becomes competitive for re-
troactive predictions exceeding 6 months. Indeed, for mostof
the other methodologies, the correlation between predicted and
observed Niño 3.4 drops below 0.7 and the RMSE rises above
the standard deviation (i.e. the monthly variability∼ 0.82◦C)
for retroactive predictions exceeding 12 months (see e.g. [2,
19]). That is why most of them limit their retroactive predic-
tions to 12 months. In our case, the correlation (from 0.80 to
0.68) and the RSME (from 0.50 to 0.62) barely change for



lead times between 12 and 36 months. However, for retroactive
predictions shorter than 6 months, our methodology is worse
because the predictions are obtained by extrapolating recons-
tructed signals and not the Niño 3.4 signal itself. Our approach
cannot resolve the short term (1–6 months) variability of Niño
3.4 as the other forecasting methodologies, but is able to suc-
cessfully predict the large variations in Niño 3.4 several years
in advance. Taking more modes into account (such as the 7
months period component) would slightly increase the accu-
racy of the reconstruction and short-term forecasts but would
barely change mid-term predictions.

4 Conclusions

We apply the wavelet-based methodology described in [13]
to decompose the Niño 3.4 index into quasi-periodic oscillating
components (periods of about21, 31, 43 and61 months) with
smooth time-varying amplitudes. The components obtained al-
low to rebuild accurately the original signal (strong correlation,
low RMSE). More than95% of the observed major El Niño/La
Niña events are detected in the reconstructed signal. This shows
that the main part of the variability found in ENSO is explained
by a superposition of these four quasi-periodic signals. Extra-
polating the amplitude of each of the four components (using
Lagrange polynomials) allows us to extrapolate the rebuiltsi-
gnal and therefore to predict the next occurrence of a major
event. Moreover the hindcast procedure also leads to error bars
for these predictions. The next La Niña event should start early
in 2018 and should be followed soon after by a strong El Niño
event in the second semester of 2019.

This forecasting method is particularly well-suited for pre-
dictions exceeding 6 months and allows to predict the large
variations in Niño 3.4 (which induce major El Niño/La Niña
events) up to four years in advance. As future developments,
understanding the underlying mechanisms governing ENSO va-
riability (i.e. the origin of the “pseudo-periodicities” detected
in Niño 3.4) is a subject of first importance in order to improve
the reliability of the forecasting models. Finally, this methodo-
logy could be applied to other time series (e.g. the North At-
lantic Oscillation index) where periods of about30, 40 and60
months have also been found [14].
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