A wavelet-based mode decomposition applied to the ENSO index
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Résumé —Ce papier présente la description et I'application d’'une décompositiomlmbdsée sur la transformée en ondelettes. Une fois la
décomposition réalisée, les composantes sont séparément extsagoideant lieu a une prévision sur I'évolution du signal. La qualité de la
prévision est évaluée via une procédure de prévisions rétroadtwas!'indice climatique ENSO, la décomposition fournit quatre composante
correspondant a des pseudo-périodes d’endilgi31, 43 et61 mois respectivement. La reconstruction dét&gts des événements El Nifio/La
Nifia des 65 derniéres années.

Abstract — This paper consists of a description and an application of a mode destimp@erformed through a wavelet transform. Once the
decomposition is performed, the components are separately smoottdpaated, which leads to a forecast of the signal. The quality of the
forecast is assessed through a hindcast (running retroactivingrolbecasts) procedure. For the ENSO time series, the decomposéisitiz
four components corresponding to pseudo-periods of abuil, 43 and61 months respectively and the reconstruction reco9&fs of the
major El Nifio/La Nifia events of the past 65 years.

1 Introduction vere weather events, which dramatically affect human iiets
and ecosystems worldwide [1, 5, 7, 17]. Therefore, shontte

The aim of this work is to provide and apply a wavelet-basedENSO predictions are of first importance for seasonal ckmat
mode decomposition (introduced in [13]) and use it to dgvelo forecasts, in order to help governments and industriesao pl
a simple yet powerful forecasting method. The basic idea is tactions before the occurrence of these phenomena.
extract quasi-periodic oscillating components from thatico As a result of the analysis, it turns out that the signal can be
nuous wavelet transform of the original signal but, unlike t decomposed into four components of periods of alauB1,
Fourier transform, the amplitudes are not constant anymore43 and61 months with smooth time-varying amplitudes. The
they vary smoothly with the abscissa, as in the empiricalenodreconstructed signal recove3s/31 of the El Nifio/La Nifia
decomposition ([4, 8]). This allows to drastically decre#ise  events that occurred from 1950. These components are extra-
number of terms needed to rebuild accurately the signal@nd polated to perform several years forecasts of the ENSO jndex
take into account only the terms carrying most of the infermain the same spirit as in [16]. The prediction skills of thisthrl
tion. By doing so, the reconstructed signal resolves thgelar are tested through a hindcast procedure. It appears thes thr
variations of the original one without taking the noise iatd  years hindcasts allow to recover up®®% of the El Nifio/La
count. Then, the extracted components are smoothly extrapflifia events of the last0 years. Compared to other methodo-
lated using Lagrange polynomials, such a process leads to #yies, our forecasting method is particularly compegitfor
extrapolation of the reconstructed signal which standsifio-  predictions exceeding 6 months, since the variability ofSEN
recast of the raw signal. The forecasting procedure is finallis mainly driven by the four mentioned periods. The next La
assessed using hindcasts (running retroactive probirgjgare Nifia event should start early in 2018 and should be followed
tions) from which error bars for the predictions are derived by a strong El Nifio event in the second semester of 2019.

We use the abovementioned procedure to study real-life data
For that purpose, the El Nifio Southern Oscillation (ENSO)
index is analyzed. ENSO is a climate pattern induced by se@  Method
surface temperature anomalies (SSTA) in the tropical Racifi
Ocean. An anomalous warming in the SSTA is known as EQ.l Wavelet-based mode decomposition
Nifio, while an anomalous cooling bears the name of La Nifa.
ENSO is well recognized as the dominant mode of interannual The wavelet-based mode decomposition provides a simple
variability in the tropical Pacific Ocean. It affects the asn  yet powerful method for decomposing a signal into a finite
pheric general circulation which transmits the ENSO sigoal number of components [13]. Each component is associated to
the other parts of world ; these remote effects are called “tea mean frequency but, unlike the Fourier transform, this de-
leconnections” and induce changes in the occurrence of seemposition does not lead to pure cosines. A component is



not identified with a fixed amplitude or frequency ; they slpwl amplitudes,/ frequencies and phases. Let us remark that the
evolve through time. A Fourier series decomposes a periodiamplitudeC';, corresponding to a given frequency, is a func-
signal into an infinite sum of sine and cosine functions; fromtion of ¢; this allows to drastically decrease the number of
a practical point of view, a signgl is approximated by a fi- components compared to the Fourier transform. Note that the
nite sum ofK cosines,f(t) ~ Eszl ¢k cos(wit + ¢ ), where  terms “period” and “frequency” are used interchangeabthé
the coefficients;, are amplitudes andy, frequencies. Howe- following. Also, the periods detected are also called “pgeu
ver, such a decomposition often leads to a sum with too mangeriods” due to the way the;’s are computed.
terms. The idea underlying the wavelet-based mode decompo-Each component can be extrapolated in the following way.
sition is to decrease the number of terms by considering thender the hypothesis stated aboveT'iis the abscissa of the
amplitudesc, as functions oft. This property relies on the last available data, the only unknown parameter is the ampli
fact that wavelets provide a good local time-frequency +esotudeC;(t) (1 < j < J), which is supposed to vary smoothly
lution. One thus tries to have the following decomposition :on [0, T'] ; its time-varying values can therefore be extrapolated
ft) =~ ijl C;(t) cos(wjt + ¢;), whereJ should be much (fort > T') using Lagrange polynomials. The computation was
smaller thank (see equality (3) for the exact formula). For a based on the last available values of the signal (i.e. corres-
detailed description of the theory of continuous wavel@h¢r pondingtot =7 —1, T —2, T — 3 andT — 4). This number
forms, the reader is referred to [3, 10]. 4 was chosen in order to minimize the root mean square error

The wavelet used in this study is the one used in [13], whiclbetween the real signal and the hindcasts (see below) ; howe-
is similar to the Morlet wavelet and is well-suited for fremey  ver, altering this parameter (e.g.or 3) does not significantly
analysis. With such a wavelet, the complex wavelet transfor modify the results and excessively increasing it leads ® un
of a real signalf (belonging to the spac:é2 (R)) is defined as  table extrapolations. Summing the extrapolated valuegee!

t da to each component defines the forecast pore precisely, it
(a,) / f(x —, (1)  corresponds to a forecast of the reconstructed sifinal
Let us remark that in the case of the ENSO time series, the

wherey is the complex conjugate Q/f, t € R stands for the mean frequencies are well-known, as discussed in section 3
location parameter and > 0 denotes the scale parameter. Let(see [12, 14, 9]).

us note that is also referred as the time parameter in the follo-
wing. _ ) )

The decomposition used in this analysis can be summed .3 Hindcasts and estimation of errors
as follows. First, a wavelet spectruinis associated to the si-
gnal f [14] :

Such a forecast needs to be properly cross-validated. An in-
Aa) = E|W f(a,-)], tuitive idea is to look at the firgt) (to < T) data elements, then

here E denotes th ith {10 the i ; produce a retroactive forecast and compare the so-obtpieed
\{_Vh ere | enotes efmee:]r? Vr\]"A respr)]ec 0 the ime IoaraIinete&iction to the original signal. One can then perform the same

escalesy, ..., ay for which A reaches a maximum aré Kept oo again, but with, increased byl, and so on until the
(let us recall that a scale (or a period) behaves as the meérs

I end of the time series. It is important to notice that, in tsy,
gfrequency,' see e.g. [3, 10]). The sigyidh then decomposed no information past the date from which a prediction is issue
in the following way,

is used.
J More precisely, the efficiency of the forecasts was tested
+fi), (2)  with probing hindcasts, computed as follows.
= 1) One considerg;, (the time serieg’ up to the time point
with . to), computes its wavelet spectrum and looks for the scales
fi@) = [Wf(a;,t)| cos (arg W f(a;, 1)) 3) for which it reaches a maximum. The reconstructed signal
o 2N 7 ft, is computed using equation (4).
Ty = vandfot) = £ = 25 fit) 2) Starting from the last four values gf,, the retroactive
forecast time serieB; (to + 1),. .., Fy, (to + k), ranging

2.2 Forecasting procedure from the absciss&, + 1 to t, + k are obtained using the
Once the decomposmon gfhas been performed using equa- methqd described in the previous section.' In particular, th
tion (2), the agna[ - fj can be seen as an approximation of a priori unknown local fL_lture values (abscissa greater than

£ in terms of oscillatory components. The reconstructedagign to) are not used to obtain the valueslof.
f used below has the following form (see [13]), 3) The initial condition is increased Hyand stepd — 3 are
repeated.
J . . L .
Fn 4) Thek-months lead hindcast associated to the initial condi-

F) = ft) = ; Cj(t) cos(wjt + ;) ) tionto, denoted by, 1, is the signaky, (to+k), Fr+1(to+

_ 14+ k),...,Fr_;(T) whereT is the abscissa of the last
wherew; is the mean frequency abs (arg W f(a;,)) (and available data in the original signal.

is proportional tol/a;). This reconstructiorf depends onJ In order to measure the efficiency of our method, we procee-
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FIGURE 1 — Left : modulus of the wavelet transform (values
range from0 (dark blue) tol.2 (dark red)) and wavelet spec-
trum. Four peaks are detected.
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ded in the following way. Since the difference betweféty +  FigURE 2 — The four components extracted from the Nifio 3.4
k) and Fy, (to + k) is the error of thei-months prediction at time series, corresponding to the period<2010, 30.6, 43.28

timeto +k issued at timey, the hindcasts were used in a cross-and61.21 months respectively. The red (resp. blue) line indi-
validation procedure. The root mean square error (RMSE) betates when the strongest El Nifio (resp. La Nifia) event reache

ween f and the hindcast?, 1, was used as a measure of thejts peak. The green parts are the forecasts of the components
accuracy of the forecast atdata as lead time and led to error for the next five years.

bars. Finally, the Pearson correlation coefficient betvwteese
signals was also computed.

3 Application to the ENSO index

The procedure described above is now applied to a rea
life signal. The example presented here is the decompnsitic
and forecast of the Nifio 3.4 index (ERSST.V3B SST Nifio 3.£
time series provided by the Climate Prediction Center)cihi
consists of monthly-sampled SSTA (in Celsius degrees)enth . T Y oy 'y oy
Eastern Pacific Ocean recorded from Jan 1950 to Dec 201 B T T T o T
Over the last two decades, many models have been propos fime (years)
for forecasting the ENSO phenomenon (sp ://iri.columbia.edu-

Iclimate/ENSO/cur renti nfo/QuickLook.html) by focusing onthe  FIGURE 3 — Nifio 3.4 (black) and m-Nifio 3.4 (green) and the
Nifio 3.4 index [11, 18, 15, 19], generally with lead times pfu forecast of m-Nifio 3.4 for the next five years. The error bars
to one year. were estimated using the RMSE related to the hindcasts. The

The wavelet transform of the signal and its wavelet spectrureginning of the El Nifio and La Nifia episodes in the Nifio 3.4
are plotted in Fig. 1. The spectrum displays four peaks corindex are indicated with red and blue arrows respectiveig T
responding to pseudo-periods 2.9, 30.6, 43.28 and61.21  undetected El Nifio event is pointed by a red circle.
months respectively (note that a weak peak is also detected
around7 months but is considered as noise). Then, the four
corresponding components are computed and rescaled to midi-4 (see Fig. 3).
mize the RMSE between the reconstructed signal and the ori- As shown in Fig. 3, a forecast of the Nifio 3.4 time series is
ginal series (see Fig. 2). It can clearly be seen that thegest  issued, where the errors bars are computed through the RMSE
El Nifio and La Nifia events occurred when all the componentgf the hindcasts of the corresponding lead time. Let us mate t
simultaneously reached a peak. 92% of the extreme events that occurred in the last 50 years can

The reconstruction of the Nifio 3.4 signal, denoted by mbe detected 1 year in advance, and 81l (resp.78%) can be
Nifio 3.4, is computed as the sum of the four components meriecovered 2 (resp. 3) years in advance.
tioned above and is plotted in Fig. 3. The Pearson correlatio In comparison with other Nifio 3.4 forecasting methodolo-
between these two signals(iss94 and the RMSE i9.366°C,  dies [2, 6, 18, 19], our approach becomes competitive for re-
which confirms that m-Nifio 3.4 allows to recover most of thetroactive predictions exceeding 6 months. Indeed, for robst
variability of the original signal. Let us note that if therne  the other methodologies, the correlation between prediantel
ponent associated to the 7 months period is added, thegesufbserved Nifio 3.4 drops below 0.7 and the RMSE rises above
remain almost unchanged (the RMSHIi836°C and the cor- the standard deviation (i.e. the monthly variability0.82°C)
relation is0.912). Using the definition of an El Nifio/La Nifia for retroactive predictions exceeding 12 months (see 24g. [
event of the Climate Prediction Center (threshold+af5°C ~ 19]). That is why most of them limit their retroactive predic
(El Nifio) or —0.5°C (La Nifia) reached by at least five conse-tions to 12 months. In our case, the correlation (from 0.80 to
cutive months)30/31 major events are recovered by m-Nifio 0.68) and the RSME (from 0.50 to 0.62) barely change for




lead times between 12 and 36 months. However, for retr@activ [4] P. Flandrin, G. Rilling, and P. Goncalves (2003) Empaitic
predictions shorter than 6 months, our methodology is worse ~ Mode Decomposition as a filter bankEEE Sg. Proc.

because the predictions are obtained by extrapolatingiseco Lett.
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3.4 as the other forecasting methodologies, but is abledo su sity Press.
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barely change mid-term predictions.
y ¢ P conflicts are associated with the global climabdature,
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