
The Tricomi approach to Chebfun Imaging in Electron Paramagnetic
Resonance Tomography : Towards a Unifying Imaging Process for

Cultural Heritage
Yann LE DU1,2, Mariem EL AFRIT1,2, Rafaël DEL PINO 3

1PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche Chimie Paris, UMR8247, 75005 Paris, France
2Centre de Recherche et de Restauration des Musées de France, C2RMF, Palais du Louvre - Porte des Lions,

14 Quai François Mitterand, 75001 Paris, France
3ENS 45 rue d’ulm 75005 Paris

yann.ledu@chimie-paristech.fr, mariem.el-afrit@chimie-paristech.fr, delpino@ens.fr

Résumé – Les besoins en imagerie pour l’étude des objets du patrimoine culturel nécessitent la manipulation d’un objet numérique unique
qui combine les images obtenues à la fois à différentes échelles et à différentes longueurs d’onde, avec la possibilité de choisir une représen-
tation à deux ou trois dimensions. Nous proposons un traitement unifié des données en imagerie fondé sur la technologie de Tchebychev telle
qu’implémentée dans le logiciel libre Chebfun, et décrivons notre version de la backprojection filtrée adaptée au paradigme Chebfun, avec
une application spécifique en Imagerie par Résonance Paramagnétique Électronique, une technique spectrométrique que nous avons récemment
appliquée à l’études d’objets du patrimoine.

Abstract – Cultural heritage imaging has specific needs with regards to the analysis of images that require the manipulation of a single digital
object that combines the images obtained both at different scales and at different wavelengths, with the further possibility of selecting two or three
dimensional representations. We propose a unified imaging data processing approach based on the Chebyshev Technology powered open source
Chebfun software, and describe our Chebfun-based filtered backprojection with an example application to Electron Paramagnetic Resonance
Imaging, a spectrometric technique that we recently applied to the study of cultural heritage objects.

1 Image processing and cultural heritage

Together, the Institut de Recherche de Chimie Paris (IRCP1)
and Centre de Recherche et de Restauration des Musées de
France (C2RMF2) have set up a mixed research team, Physico
Chimie des Matériaux Témoins de l’Histoire (PCMTH), in or-
der to bring new solutions to the challenges facing the analysis,
conservation and restoration of cultural heritage objects, and
one of the team’s ambitious research projects concerns digi-
tal images : how to best acquire, store, analyze and combine
them. The C2RMF tools of the trade include optical and X-ray
photography3, and, thanks to the expertise in Electron Param-
agnetic Resonance (EPR) brought by the team’s IRCP compo-
nent who pioneered the application of EPR imaging (EPR-I)
to exobiology [5], has decided to use EPR-I in order to image
specific chemical species which X-rays and other traditional
techniques are unable to specifically target, like the different

1The IRCP is the research branch of Chimie ParisTech, covering many do-
mains of chemistry.

2The C2RMF is an institution of the Ministry of Culture devoted to the
analysis and conservation of the cultural heritage of the French Museums.

3A paper detailing those activities was submitted by Boust et al. to that
same GRETSI conference.

layers of carbon-related material found inside paintings.
However, this EPR-I information needs to be merged with

the one gathered from other sources, be it X-rays or optical
photography in order to provide a single object to which we
may attach an interface for subsequent manipulations. This
merging would be greatly simplified if we could unify the dif-
ferent pipelines that take raw data and transform them into im-
ages. At the moment, there are different pipelines (programs
and associated algorithms) for each imaging technique, and
even the data formats are different. This actually stands as a
major global challenge : many domain specific techniques ex-
ist to solve particular problems in imaging, yet the final results
obtained after applying each technique are difficult if not im-
possible to combine. The PCMTH team, in association with
the C2RMF imaging team, is thus developing a generic ap-
proach which would allow a single pipeline to process all the
different kinds of data, with a single unifying data structure
and mathematical model founded on Chebyshev technology [3],
as championed by the Oxford University Numerical Analysis
Group through the development of Chebfun [4], an open-source
software system for numerical computing with functions. The
mathematical basis of Chebfun is piecewise polynomial inter-
polation and in this paper we describe the role Chebfun plays



in our unifying approach to image data processing4, and more
specifically how we managed to fit the key tomographic pro-
cess of backprojection into the Chebfun paradigm. We show
that this approach provides a promising imaging data process-
ing unification without having to pay a performance cost : it is
a zero-cost abstraction5.

2 Chebfun for experimental data
The Chebfun approach allows a particular representation of any
function based on Chebyshev polynomials, making the latter as
easy to subsequently manipulate as polynomials [11]. Chebfun
is both the name of the software and of the underlying mathe-
matical object (chebfun, all in lowercase) that have a software
implementation, and chebfuns can be described using a pro-
gramming language terminology : a chebfun is an object with
an interface. The mathematical concepts of integral, derivative,
maxima and other similar ones become methods of the chebfun
interface.

In the field of experimental science, we do not collect func-
tions, but rather function samples. We need to transform data
points into a chebfun, giving us access to the same interface as
the one Chebfun originally provides for functions ; any data-
related query thus becomes a call to a chebfun method, from
simple ones like finding the maximum or the integrated signal,
to more complex ones like “what image is produced with this
data”, and “how close is this image to that one”. The key idea
remains the same : transform data into a chebfun, and then use
the available methods or add new ones to that same object’s
interface.

Within the existing Chebfun implementation as available in
the eponymous Matlab toolbox, we can transform arbitrary data
into a chebfun object ; we use the very practical FUNQUI func-
tion which takes a series of data points supposed to vary with
a single underlying variable [6], which builds an appropriate
Chebfun object. Hence in the rest of the paper we shall con-
sider that the data is appropriately represented by a chebfun.

Now, it would be easy to apply the traditional data process-
ing algorithms to sampled chebfuns, but that would defeat the
whole purpose of the Chebfun approach and make it a waste
of time. Instead, because data is a chebfun, we may now con-
sider algorithms from their operator aspect and thus interpret
any subsequent operation on the data as the application of an
operator to a chebfun. This means that in order not to switch
back to sampled data, we need to find ways of mapping any
subsequent transform to a composition of more or less simple
operations on the chebfun itself. For example, if we wanted to
find the derivative of the “Chebfunized” data, we could always
resort to sampling the chebfun and compute the discretized
derivative, but that is exactly what we would like to avoid : we
should instead compute the derivative of the underlying cheb-

4We can find more details on our website HPU4science [2]
5We import that concept from the field of computer languages, espe-

cially from the abstractions provided by the C++ STL and implemented using
Stepanov’s generic programming approach [10].

fun mathematical object. The default interface provided by the
toolbox already exposes many such operations, and our goal
is to enrich that interface with methods useful for tomography,
and imaging in general.

3 EPR Imaging
EPR spectrometry monitors the absorption of oncoming mi-
crowaves by a sample as we vary an applied magnetic field ;
the combination of the microwave frequency with the magnetic
field intensity at which absorption is maximized constitutes the
signature of a particular chemical species, thus revealing its
presence in the sample. Figure 2 shows a typical real EPR spec-
trum with a reasonably clear resonance magnetic field value,
and unavoidable noise. EPR imaging (EPR-I) is an extension
of EPR spectrometry, similar in principle to Magnetic Reso-
nance Imaging [9] : a magnetic field gradient is added to the
global magnetic field and maps the different positions of atoms
responsive to EPR spectrometry to different magnetic field res-
onance values on a spectrum ; if a chemical species has a zero
gradient resonance spectrum s, then, given a magnetic gradient
G and global magnetic fieldB, the linear density of the species
is mapped to a spectrum according to

r (B) =

ˆ
sample

c (x) · s (B +G · x) dx (1)

where the integral has the form of a convolution, and is applied
on the sample in the direction of the magnetic field gradient.
The linear density c is itself related to the volume density ρ
by a surface integral : c(x) is the integral of ρ on the plane
orthogonal to the direction of the magnetic field gradient at the
position x on that direction ; the problem is to find ρ given only
the EPR spectra, i.e. r and s.

Different solutions exist and our own which is summarized
in figure 1. In order to simplify the problem, we shall consider
the sample to be a 2D flat surface, thus transforming the surface
integral relating ρ to c into a line integral (along the direction
AB in figure 4), leading to the Radon transform R representa-
tion of c as being c = Rρwhich allows us to rewrite equation 1
more abstractly as r = s ?Rρ ; Given that simplification, fig-
ure 4 describes the EPR imaging process.

The problem is now to find ρ, a flat surface density which
thus depends on the variables (x, y), given the experimental
spectra r and s. It is a typical inverse problem, involving the
well-known Fredholm integral equation of the first kind which
the convolution equation 1 is an example of, together with the
Radon transform, thus requiring two inversions : the first is a
deconvolution, and the second the filtered backprojection oper-
ator that involves the naive backprojection B. As for the con-
volutional part, this blurring of the density is traditionally dealt
with using Fourier transforms directly on r, but it turns out that
the deconvolution can be performed on the final image thanks
to the linearity property of the backprojection operator with re-
spect to convolution :



B (s ?Rρ) (x, y) = (Bs ? ρ) (x, y) (2)

This property allows us to postpone the deconvolution and ap-
ply it only on the blurred reconstructed image, instead of the
blurred linear density. But in this paper, we shall even further
simplify the problem and suppose that the EPR spectra are a
direct mapping of the linear density, a simplification fully jus-
tified by the property expressed in equation 2, and we shall just
inverse the simplified equation r = Rρ but with the require-
ment that the inversion fits into the Chebfun paradigm : we
would like to find an inverse transform that maps to simple op-
erations on the chebfun itself, without having to mediate those
transformations through sampling. In our general methodol-
ogy we thus focus on three specefic nodes of the more general
approach depicted in figure 1.

4 The Chebfun backprojection

Figure 1 – Our approach to tomography uses two mathemat-
ically equivalent yet implementation-wise different paths : in
this paper, we describe the three nodes which are highlighted
in blue and with double-line contours. The key steps are the
transformation of spectra into chebfuns, and the formulation of
the inverse problem solution using the Tricomi transform. The
third node, the backprojection itself, is not described in this
paper yet used for the reconstructions.

In order to inverse the Radon transform, the common prac-
tice is to filter the naive backprojection B and we may retrieve
the density ρ by using the well known Fourier form of the fil-
tered backprojection [8] which has an equivalent form that uses
the Hilbert transform [8]. Thanks to the commutativity of the
latter with the derivative, we can write

ρ (x, y) = −1

2
B
[
∂H (Rρ) (t, θ)

∂t
(t, θ)

]
(x, y) (3)

If we now recall that the Rρ are the EPR spectra, we can con-
sider each of those to be a chebfun (as we previously discussed
in section 2) which we shall call Pθ, by defining

Qθ (t) = Pθ (t) ·
√

1− t2 (4)

we obtain that in equation 3,

H (Rρ) (t, θ) = H (Pθ) (t) = H
(
Qθ (t)√
1− t2

)
(t) (5)

We can now express Qθ as a combination of the Chebyshev
polynomials of the first kind Tn with coefficients Cn, so that
from equation 5 we obtain

H (Pθ (t)) (t, θ) =
∑
n

(
Cn (θ) · H

(
Tn (t)√
1− t2

)
(t)

)
(6)

Because we study physical objects which have a finite exten-
sion and under the hypothesis that the corresponding chebfun
will also have a finite support, our Hilbert transform becomes a
Tricomi transform [12] T . This, together with the very useful
property of the Tricomi transform

T
(

Tn (t)√
1− t2

)
(t) = − 1

n

∂Tn (t)

∂t
(7)

allows us to rewrite [7] equation 6 as

H (Pθ (t)) (t, θ) = −
∑
n

(
Cn (θ)

n
· ∂Tn (t)

∂t

)
(8)

and finally equation 3 becomes

ρ (x, y) =
1

2
B
[
∂2

∂t2

(∑
n

(
Cn (θ)

n
· Tn (t)

))]
(x, y) (9)

This last expression reveals the simple relationship between the
spectrum chebfun, obtained directly from the raw (sampled)
spectrum, and the reconstructed image, which can easily be
expressed as an algorithm amenable to a Chebfun compatible
implementation :

1. Prefactor the raw spectra r(t) by 1/
√
1− t2 ;

2. transform each prefactored spectrum into a chebfun with
the FUNQUI function ;

3. apply the square brackets part of equation 9 ;

4. apply the naive backprojection B that constitutes the re-
maining part of equation 9.

Step 4 of our algorithmic implementation above requires the
computation of the naive backprojection. Here also we took
advantage of the Chebfun approach, but describing that would
lead us beyond the limits of the present paper.
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Figure 2 – An EPR spectrum with its Chebfun representa-
tion. The absorption (arbitrary units) is measured as the mag-
netic field is varied (abscissa, in Gauss) and the microwave
frequency of the oncoming radiation kept constant (around
9.5GHz for X band EPR); EPR traditionally measures the
derivative of that signal, explaining the bumps and troughs. The
maximum absorption is here around 3500 G.

Figure 3 shows that our reconstruction is at least as good as
the standard procedure using the vanilla Matlab imaging tool-
box solution that uses the IRADON function. Figure 5 shows
the application of our approach to experimental data : it does
not yet include any noise filtering, yet it already improves on
the traditional Fourier-based approach which black-box imple-
mentation is provided by the Bruker XEPR software suite that
comes with the EPR imaging spectrometer [1].

(a) Original Shepp-
Logan phantom.

(b) Standard
Fourier reconstruc-
tion.

(c) Our Chebfun
reconstruction, cf.
figure 1.

Figure 3 – We tested our approach on the Shepp-Logan phan-
tom (left). The other two figures show the phantom reconstruc-
tion using only the information provided by the Radon trans-
form of the phantom sampled on the angles, cf. figure 4. We
can see that our approach is at least as good as the standard one.
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