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Résumé – La récente définition de p-exposants et p-leaders étend l’application de l’analyse multifractale à des fonctions ou signaux de régularité
négative, à conditions que ceux-ci soient localement Lp. Le formalisme multifractal, mis en oeuvre sur des signaux à temps discret, qui ne
satisferaient pas cette contrainte théorique, produira toujours un résultat pratique, qui semblera réaliste, mais n’aura pas de validité théorique.
Il sera cependant impossible a posteriori de s’en rendre compte. Dans ce travail, nous utilisons le modèle simple des cascades d’ondelettes
déterministes pour étudier théoriquement la forme que prendra l’estimation pratique du spectre multifractal de fonctions non localement Lp.
Nous conjecturons que la forme obtenue est valide en général et le validons au moyen de simulations numériques.

Abstract – The recent introduction of p-exponents and p-leaders extends the application of wavelet leader multifractal analysis to functions or
signals with negative regularity. These new quantities are defined only for functions that are locally in Lp. However, in practice, estimations from
discrete data can always be computed, even if the underlying function that models the data is not in Lp. In this case, the analysis is meaningless
but indistinguishable from a valid one. In this contribution, we use a very simple function model provided by deterministic wavelet cascades to
study the behavior of multifractal estimates when they are computed from discrete data that is not modeled by a function in Lp, and show that the
result is a spectrum with correct shape but shifted so as to exactly be in the Lp limit. We also use numerical simulations on various multifractal
random processes to show that the validity of our results extends beyond the simple model that we used.

1 Introduction

Multifractal analysis. Multifractal analysis is nowadays a re-
levant and valid signal processing tool. It has been success-
fully used to analyze, describe, model and classify the dyna-
mics of signals in numerous applications, which include hy-
drodynamic turbulence [11], biomedical data [4] and internet
traffic [3], among many others. Multifractal analysis describes
a function X(t) based on its local regularity, commonly mea-
sured by the Hölder exponent h(t) [6]. It is, however, often the
case in practice that data to be analyzed contain negative regu-
larity. In that case, the Hölder exponent can not be used since
it is a strictly positive quantity. To overcome this limitation,
a generalization has recently been proposed, the p-exponent
hp(t) [1, 8, 9], which can take negative values, hp(t) ≥ −1/p,
for fixed p ∈ (1,+∞], and can be computed for the less res-
trictive set of functions which belong to Lp. This new setting
contains the Hölder exponent as the limit case p = +∞.
Multifractal formalism. Rather than characterizing X(t) via
the function hp(t), multifractal analysis provides a global and
geometric description of the fluctuations of the values of hp(t)
along time : the multifractal spectrum Dp(h), defined as the
Hausdorff dimension of the set of points where hp(t) = h. This
theoretical definition is, however, not constructive for obtaining
procedures for computing Dp(h) from finite resolution data.

Instead, practical estimation is achieved through a procedure
referred to as the multifractal formalism. It relies on the use of
relevant quantities for measuring p-exponents, referred to as p-
leaders [1,8,9]. For p = +∞ (Hölder exponents), one recovers
the well-known wavelet leaders [6].
Practical pitfalls of negative regularity. The multifractal for-
malism requires the parameter p to be fixed a priori. The precise
choice of p is critical because for a function that is not locally
in Lp, the theoretical quantity on which the analysis is based
(the p-exponent) and the multiresolution quantities used for its
estimation (the p-leaders) are theoretically ill defined and take
infinite values. However, in practice, estimation is performed
on discrete data, i.e., on a finite-valued finite-resolution sam-
pled version of a function. Thus, the multiresolution quantities
can always be computed, since they consist of finite sums of
finite values, and are hence finite for any (positive) value of
p. The multifractal formalism therefore always provides finite-
valued estimates for the multifractal spectrum obtained from
discrete data. Yet, if the function modeling the data does not
belong to Lp, the result of the analysis is meaningless, since
the underlying quantities and the multifractal spectrum are not
theoretically defined, and misleading, since the estimated mul-
tifractal spectrum is nevertheless indistinguishable from a valid
spectrum of a function that is in Lp.
Goals and contributions. The goal of the present contribu-



tion is to shed light on this important pitfall and to study the
multifractal spectrum obtained with the p-leader multifractal
formalism when the condition X ∈ Lp is violated. To that end,
we study theoretically the multifractal spectrum obtained for
finite resolution data from a simple deterministic multifractal
model. We obtain explicit expressions of the estimated spectra
when the model function is not in Lp. We provide numerical si-
mulations for different synthetic multifractal random processes
that indicate that this theoretical result is a valid approximation
in general for multifractal processes, beyond the simple deter-
ministic model it is based on.

2 p-leaders multifractal analysis
p-exponent regularity. Let X ∈ Lploc(R) for p ≥ 1. X is
said to belong to T pα(t), with α > −1/p, if there existC,R > 0
and a polynomial Pt (with deg(Pt) ≤ α) such that ∀a < R,(

1
a

∫ t+a/2
t−a/2 |X(u)− Pt(u− t)|p du

)1/p
≤ Caα. The p-expo-

nent of X at t is defined as hp(t) = sup{α : X ∈ T pα(t)}.
It is a natural substitute for the Hölder exponent when dealing
with functions which are not bounded (but belong to Lp) and
admits negative values hp > −1/p. The Hölder exponent is re-
covered for p = +∞. The p-exponents can be measured using
p-leaders, defined in the next paragraph.
Wavelet coefficients and p-leaders. Let {X(t)}t∈R denote
the signal to be analyzed. Letψ denote the mother wavelet, cha-
racterized by its number of vanishing moments Nψ , a strictly
positive integer such that

∫
R t

kψ(t)dt = 0, ∀k = 0, . . . , Nψ −
1, and

∫
R t

Nψψ(t)dt 6= 0. Let {ψj,k(t) = 2jψ(2jt−k)}(j,k)∈N2

be the orthonormal basis of L2(R) formed by dilations and
translations of ψ. The (L1-normalized) discrete wavelet trans-
form coefficients are defined as cj,k = 2j/2〈ψj,k|X〉 (cf., e.g.,
[10], for more details on wavelet transforms).

Now let λ = λj,k = [k2j , (k + 1)2j) denote a dyadic in-
terval and 3λ =

⋃
m∈{−1,0,1} λj,k+m the union with its two

neighbours. The p-leaders are defined for X ∈ Lp as [1, 8, 9]

`
(p)
j,k ,

( ∑
λ′⊂3λ

|cλ′ |p 2j−j
′
) 1
p

, (1)

where the sum involves all the wavelet coefficients in a narrow
time neighbourhood of t = 2−jk for all finer scales j′ ≥ j. It
can be shown that they reproduce p-exponents in the limit of
fine scales j →∞ as `(p)j,k ∼ 2−jhp(2

jk) [1, 8, 9].
The classical wavelet leaders are given for p = +∞, in

which case (1) reduces to `(∞)
j,k , supλ′⊂3λ |cλ′ |.

Multifractal formalism. The p-leader multifractal formalism
for computing Dp(h) is defined as follows. First, the structure
functions are computed, defined as

Sp(j, q) = 2−j
2j∑
k=1

(
`
(p)
j,k

)q
∼ 2−jζp(q), j →∞. (2)

The scaling function ζp(q) is estimated by means of linear re-
gressions of log2 Sp(j, q) versus j. It can be shown that ζp(q)

is the Legendre transform of Dp(h), and thus the concave hull
of the multifractal spectrum can be recovered from ζp(q) as [6]

Dp(h) ≤ Lp(h) , min
q

(1 + qh− ζp(q)). (3)

In practice, the function Lp(h) is the only accessible quantity
and is used as the estimate of Dp(h).
Function space requirements. p-exponents and p-leaders are
theoretically defined only for functions X ∈ Lp. This requi-
rement can be checked based on the wavelet scaling function
η(p), practically defined by the relation

2−j
2j∑
k=1

|cj,k|p ∼ 2−jη(p), j →∞, p ≥ 0. (4)

It can be shown that if η(p) > 0, then X ∈ Lp, and that the
condition η(p) > 0 implies that the multifractal spectrum must
satisfy Dp(h) ≤ 1 + ph [1, 8].
Finally, note that the conditionX∈Lp is much more restrictive
for wavelet leaders (p=+∞) since L∞ ⊆ Lp for all p ≥ 1.

3 Analysis of Legendre spectra limits
We study the behavior of the multifractal spectrum (3) that

is obtained from finite resolution data for functions X ∈ Lp

and X /∈ Lp. We base our analysis on simple multifractal mo-
del functions provided by (binomial) deterministic wavelet cas-
cades (DWC), defined as follows [11] : Let 0 < ω0 < ω1 and
let the parent coefficient at scale j = 0 equal 1, c0,1 = 1.
At scale j > 0, the 2j wavelet coefficients are obtained as
cj,2k = ω0cj−1,k and cj,2k+1 = ω1cj−1,k, and therefore take
values cj,k ∈ {ωn0ω

j−n
1 , n = 0, . . . , j}. The corresponding

function is obtained by an inverse wavelet transform.
Substitution of the coefficients cj,k in (4) yields

2−j
2j∑
k=1

(cj,k)
q = 2−j(ωq0 + ωq1)

j = 2−jη(q)

from which we identify the wavelet scaling function of DWC

η(q) = 1− log2(ω
q
0 + ωq1). (5)

The Legendre spectrum of DWC reads

Lω0,ω1
η (h) = min

q
(1 + qh− η(q)). (6)

It can be easily seen in (5) that the cascade is inLp if ωp0+ω
p
1 <

2 (and hence in L∞ as long as ω1 < 1).
Restricted p-leaders analysis. For simplicity, we consider

the restricted p-leaders defined by `(p)λ =
(∑

λ′⊂λ |cλ′ |p2j−j′
) 1
p

.

It was shown that structure functions with `(p)λ yield quantities
equivalent to (2) so that the corresponding scaling functions
(defined in the limit of fine scales) coincide [7]. We suppose
that the DWC is available at finite resolution and that the largest
available scale is J . Let p ≥ 0. Using the change of variables
l=j′−j and the multiplicative structure of the cascade we have

`
(p)
λ = cλ

( J−j∑
l=0

(ωp0 + ωp1)
l2−l

) 1
p

= cλ

( J−j∑
l=0

2−η(p)l
) 1
p

.



In the limit of infinite resolution J →∞, or coarse scales j →
−∞, the sum diverges if η(p) < 0. Yet, for finite J − j,

`
(p)
λ = cλ

(
1− 2−(J−j+1)η(p)

1− 2−η(p)

)1/p

.

The p-leader structure function is therefore given by

Sp(j, q) = 2−j
2j∑
k=1

(cj,k)
q
( J−j∑
l=0

2−η(p)l
) q
p

=

(
ωq0 + ωq1

2

)j1−
(
ωp0+ω

p
1

2

)J−j+1

1−
(
ωp0+ω

p
1

2

)


q
p

. (7)

Cascade in Lp. The evolution of Sp(j, q) with j is different
from the one in (2) by a term that converges to a constant for
coarse scales j → −∞ when ωp0 + ωp1 < 2. As a result, the
power law scaling defining ζp(q) in (2) can only be measured
at coarse scales. In the limit of coarse scales,

Sp(j, q)
j→−∞∼ 2−jη(q)

(
1− ωp0 + ωp1

2

)− qp
,

and hence ζp(q) = η(q) with η(q) defined in (5). Therefore,
Lp(h) ≡ Lω0,ω1

η (h).
Cascade not in Lp. In case the cascade is not in Lp (i.e.,

ωp0 + ωp1 ≥ 2), the term
(
ωp0+ω

p
1

2

)J−j+1

in (7) diverges as a
power law when j → −∞. To proceed with the analysis, we
use the substitution ω0 = αv0 and ω1 = αv1 with vp0 +v

p
1 = 2,

implying α > 1. Then, (7) becomes

Sp(j, q) =

(
αq
vq0 + vq1

2

)j (
1− (αp)

J−j+1

1− αp

) q
p

=

(
vq0 + vq1

2

)j (
(αp)

j − (αp)
J+1

1− αp

) q
p

, (8)

where the second term of the right hand side behaves as a
constant when j → −∞ :

Sp(j, q)
j→−∞∼ 2−jζp(q)

(
1− (αp)

J+1

1− (αp)

) q
p

with ζp(q) = 1− log2(v
q
0 +v

q
1). Consequently, the multifractal

spectrum does not equal Lω0,ω1
η (h) but is given by

Lp(h) ≡ Lv0,v1η (h), vp0 + vp1 = 2 (9)

i.e., the spectrum of a cascade with multipliers v0 and v1 that
is in Lp but not in Lp

′
for any p′ > p (since vp0 + vp1 = 2).

Conclusion. For a DWC not in Lp, the estimated Lp(h) is
hence shifted to the right to touch the Lp border 1 + ph in
one single point, but does not undergo any shape deformation :
It thus resembles the spectrum that would be obtained for a
function X that is just at the limit of Lp, i.e., X ∈ Lp but
X /∈ Lp′ for any p′ > p. This behavior is illustrated in Fig. 1.

Conjecture. This leads us to formulate the following conjec-
ture : When applied to any function not in Lp, the estimated
Legendre spectrum Lp(h) is shifted to the right to touch the
Lp border 1 + ph, with no shape deformation and thus corres-
ponds to the theoretical spectrum of an equivalent process that
satisfies the Lp-constraint.
Wavelet leaders. Results for wavelet leaders can be obtained
from the calculations for p-leaders in the limit p → ∞. In this
case, when X /∈ L∞, the multifractal spectrum is given by

L∞(h) = Lv0,v1η (h), v0 = ω0/ω1 < 1, v1 = 1, (10)

It is hence shifted to the right such that its left-most point is at
h = 0. This behavior is illustrated in Fig. 1.

4 Numerical simulations
In this section, we provide numerical evidence for the fact

that expressions (9) and (10) for the limits of Legendre spec-
tra are generically valid for multifractal processes with nega-
tive regularity. To this end, we apply the multifractal forma-
lism to NMC = 50 independent realizations of sample size
N = 218 of several random processes X with known and
controlled multifractal properties. We use fractional differen-
tiation of order ν to control the function space embedding,
X(ν) = F−ν

(
(ıω)νF [X]

)
, where F stands for the discrete

Fourier transform, cf. [13] for details. Analysis is performed
using p = 2 (p-leaders) and p =∞ (wavelet leaders), for DWC
with (ω0, ω1)=(0.3, 1.6) and ν=0 (for which X(ν)∈Lp with
p≤1.14), and for the following multifractal random processes.
Random wavelet cascades (RWC) are built from wavelet co-
efficients in a similar fashion to DWC, but replacing the deter-
ministic multipliers ω0 and ω1 with random variables [2]. Let
cj=0,k=1 = 1. At scale j > 0, wavelet coefficients are obtained
as cj,2k = W l

j,kcj−1,k and cj,2k+1 = W r
j,kcj−1,k, where W l

j,k

and W r
j,k are iid positive random variables. We use log-normal

multipliers W with mean µ and variance σ2. The multifractal
spectrum is given byD(h) = 1−(h−µ+ν)2/(2 log(2)σ2) [2].
Here, we use µ = 0.56, σ = 0.3 and ν = 0.8, for which RWC
are not in Lp for any p.
α-stable Lévy processes Sα(t) are built from a symmetric
α-stable measure M(ds) as Sα(t) =

∫
R f(t, s)M(ds), where

f(t, s) = 1(t − s > 0) − 1(−s > 0) [12]. Its multifractal
spectrum is given by D(h) = α(h + ν) when −ν ≤ h ≤
1/α−ν, and D(h) = −∞ otherwise [5]. We set α = 1.25 and
ν = 0.7 (for which Sα are in Lp with p ≤ 10/7).
Conjecture. Assuming the conjecture above is true, the esti-
mated spectra for RWC should read Lp(h) = 1 − (h − µ +

ν′)2/(2 log(2)σ2) with ν′ = µ −
√
2 log(2)σ2 if p = ∞, or

ν′ = µ− log(2)σ2 if p = 2. Similarly, for Sα(t) it should read
Lp(h) = α(h+ ν′) with ν′ = −1/p.
Estimation of multifractal spectra. Fig. 1 plots the p-leader
(left column) and wavelet leader (right column) based estimates
of D(h) (black solid lines, points) for DWC (top row), RWC
(center row) and Sα (bottom row), together with the theoreti-
cal spectra Lω0,ω1

η (h) (red solid lines), the limit spectra (9) and
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Lévy p = 2 Lévy p=∞

FIGURE 1 – Multifractal analysis of DWC (top row), RWC
(center row) and Lévy process (bottom row) with negative re-
gularity using p-leaders (p = 2, left column ) and wavelet lea-
ders (p = ∞, right column) : theoretical multifractal spectra
Lω0,ω1
η (h) (red solid lines), Legendre limit spectra Lv0,v1η (h)

(blue solid lines), estimates of multifractal spectra (black solid
lines, points) and Lp limit (black dashed-dotted lines, crosses).

(10) (blue solid lines) and the Lp limits D(h) ≤ 1 + ph (black
dashed-dotted lines). First, the multifractal formalism clearly
provides estimates that conspire to resemble valid multifrac-
tal spectra, despite the fact that p-exponents and p-leaders are
theoretically undefined and infinite. The estimated spectra are
shifted to the right with respect to the theoretical spectra, so that
they are right below the Lp limit for the value of p used in the
analysis, yet they precisely conserve the shape of the theoreti-
cal spectra so that they are a posteriori indistinguishable from
valid spectra. Second, Fig. 1 indicates that the proposed expres-
sions (9) and (10) for the limit spectra provide excellent models
for the estimated multifractal spectra not only for DWC, but
also for the synthetic random processes RWC and Sα. This is
in particular remarkable for Sα, whose construction is not ba-
sed on a multiplicative cascade but on an additive mechanism,
which indicates the general validity of the model for processes
with negative regularity. Finally, note that while inspection of
the estimated multifractal spectra does not provide any indica-
tion for the fact that the Lp assumption is violated, estimates
of the wavelet scaling function η(p) are found to be negative
for p = 2 and p = ∞ for all processes and hence enable to
detect that the assumption X ∈ Lp is violated and the analy-
sis is invalid. This underlines the importance of performing a
preliminary wavelet based analysis and checking the condition
η(p) > 0 before applying the p-leaders multifractal formalism
to data.

5 Conclusions
In this contribution, we provided a theoretical analysis of the

p-leader multifractal formalism when applied to finite resolu-
tion data coming from functions with negative regularity, which
are not in Lp. We used a simple deterministic model to derive
expressions for the estimated multifractal spectra. The model
predicts that the estimated spectra precisely resemble the theo-
retical multifractal spectra of functions that would be obtained
by increasing the regularity of the original functions such that
they are in Lp but not in Lp

′
for any p′ > p. Numerical si-

mulations for synthetic multifractal random processes indicate
the validity of this model for general processes with negative
regularity. The result provides a better understanding of the p-
leader and wavelet leader multifractal formalisms for discrete
data and stresses the importance of checking a priori that data
are in Lp by performing a preliminary wavelet based analysis.
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