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Résumé – La tomographie 3D + temps, ou 4D, peut être vue comme un problème d’optimisation convexe. Tout revient à
rechercher le minimum d’une fonction de coût, qui peut inclure de l’information connue a priori, comme des contraintes de support
ou de parcimonie dans une base donnée. La taille du jeu de projections X et de l’image 4D à reconstruire, ainsi que les contraintes
de temps de calcul pour permettre une utilisation clinique, restreignent fortement le choix de l’algorithme de minimisation : la
matrice du système est trop grande pour être stockée explicitement, il faut éviter autant que possible les copies multiples de
l’image 4D, et l’algorithme doit converger (ou presque) en quelques itérations. Cette dernière contrainte suggère l’utilisation d’un
algorithme incrémental, comme la méthode de Kaczmarz ou Kaczmarz par blocs, car les algorithmes incrémentaux ont souvent
une convergence initiale plus rapide que leurs homologues non-incrémentaux. Ce travail décrit comment une méthode existante
qui satisfait toutes ces conditions peut être appliquée à la tomographie 4D régularisée. Il évalue l’impact de l’utilisation d’une
approche incrémentale sur la vitesse de convergence en fonction du nombre de sous-ensembles choisi. Les résultats préliminaires
sur un fantôme 2D + temps sont encourageants, et une implémentation 3D + temps adaptée au traitement de données réelles
est en cours.

Abstract – 3D + time, or 4D, X-ray tomography can be cast into a convex optimization problem. It amounts to seeking
the minimum of a carefully chosen cost function, which can include a priori information like support constraints or sparsity
on a relevant basis. The size of both the X-ray projections and the sought 4D image, as well as the maximum computation
time that can be tolerated in a clinical environment, severely restrict the choice of the minimization algorithm: the system
matrix is too large to be stored, multiple copies of the sought 4D image must be avoided, and convergence should require few
iterations. The latter requirement suggests to use an incremental method, for example the Kaczmarz or block-Kaczmarz method,
as incremental methods often have faster initial convergence than their non-incremental counterparts. This paper describes how
an existing method meeting these requirements can be applied to regularized 4D tomography. It evaluates the impact of using
an incremental approach on the convergence speed, depending on the chosen number of subsets. Preliminary results on 2D +
time phantom data are encouraging, and the 3D + time implementation for real data will follow.

1 Introduction

4D X-ray cone beam computed tomography is an active
topic of research in both cardiac and pulmonary imaging.
A robust and fast method for this purpose would find vari-
ous applications, including in-room planning and guidance
for interventional cardiology procedures and targeted ra-
diotherapy of lung tumors. 4D X-ray tomography can be
formulated as the minimization of a sum of convex func-
tions, some of which are not differentiable. Proximal split-
ting methods seem well-suited for this kind of problem.
Yet, this type of methods solve the problem in a prod-
uct space [3, 4] and require to store multiple copies of the
sought 4D image. Computation time is a major issue in a
clinical context. As the performance bottleneck is usually
in the forward or back projection operator, methods that

require fewer uses of these operators tend to be faster. A
classical way to achieve good convergence within a limited
number of iterations is the Kaczmarz or block-Kaczmarz
method, which in tomography are applied as the Alge-
braic Reconstruction Technique (ART) [5] and the Simul-
taneous Algebraic Reconstruction Technique (SART) [1].
These “incremental” methods achieve fast initial conver-
gence [2], which is a desirable property when the number
of iterations is bound to remain small due to computation
time constraints. This paper describes how an incremen-
tal constraint projection method for variational inequali-
ties proposed by Wang and Bertsekas [8] can be applied to
adapt a Total Variation regularized 4D cone beam com-
puted tomography (4D CBCT) method, namely the 4D
RecOnstructiOn using Spatial and TEmporal Regulariza-
tion (4D ROOSTER) [6]. It compares the convergence



rates obtained by the incremental method with various
numbers of projections subsets.

2 Material and methods

2.1 The original 4D ROOSTER method

The 4D ROOSTER algorithm assumes that a rough seg-
mentation of the patient’s rib cage is available, and that
movement is expected to occur only inside this segmented
region. The method consists in alternating between five
different optimization goals. It starts by minimizing a
quadratic data-attachment term

∑
θ

‖RθSθx−pθ‖22, with θ

the projection angle, x a 4D sequence of volumes, Rθ the
forward projection operator at angle θ, Sθ a linear inter-
polator, and pθ the measured projection at angle θ. This
data-attachment term is minimized by conjugate gradi-
ent. Then the following regularization steps or constraints
are applied sequentially: positivity enforcement, averaging
along time where motion is not expected, spatial total-
variation (TV) denoising, and temporal total-variation de-
noising. This constitutes one iteration of the main loop,
the output of which is fed back to the conjugate gradient
minimizer for the next iteration. Although this method
yields good results in practice, no formal proof of its con-
vergence is available.

2.2 Incremental 4D ROOSTER

The adaptation of 4D ROOSTER we present here aims to
solve the following optimization problem:

minimize
x

∑
θ∈Θ

‖RθSθx− pθ‖22

+ λspaceTVspace(x)

+ λtimeTVtime(x)

subject to x ≥ 0

x ∈ ROI

where ROI is the convex set of all 4D images such that
only voxels in the segmented region vary over time. In or-
der to make the method incremental, the data-attachment
term is first divided into n random subsets of projections,
as balanced as possible, which we name Θi, i = 1, . . . , n,
such that ∪ni=1Θi = Θ and Θi ∩Θj = ∅ for i 6= j. Setting

fi(x) =
∑
θ∈Θi

‖RθSθx− pθ‖22, for i = 1, . . . , n

fn+1(x) = λspaceTVspace(x)

fn+2(x) = λtimeTVtime(x)

the problem becomes

minimize
x

n+2∑
i=1

fi

subject to x ≥ 0

x ∈ ROI
One instance of the class of algorithms described in Wang
& Bertsekas [8] to solve the incremental version of the
problem is the following:

for k = 1 . . . NbSteps

αk = k0
k+2k0

Select one of the fi and compute x̂ = proxαkfi
(xk)

Select one of the constraints and project onto
it: xk+1 =

∏
Cj

(x̂)

end

The fi and the constraint are selected by deterministic cy-
cling, which is one of the ways to ensure the convergence of
the algorithm. This allows to distinguish between “steps”
and “iterations”: in the rest of this paper, an “iteration” of
the algorithm means n+ 2 “steps”, i.e. it implies the pro-
cessing of all projection subsets (n steps), plus the spatial
and temporal TV denoising steps. Instead of computing
the proxαkfi

(xk) for the data-attachment terms, we chose
to compute x̂ by performing a few nested iterations of con-
jugate gradient (CG), which corresponds to a regularized
solution that is not far from the proximal solution. We
start with 4 nested iterations, which proved efficient in
previous studies [6].

In section 3.1, we compare the convergence speed, in
terms of Root Mean Square Error (RMSE) with the ground
truth, of several instances of the incremental 4D ROOSTER
method, with different values of the number of subsets n.
The number of iterations NbIter is first kept constant be-
tween instances. A threshold on the RMSE is then used
as a stopping criterion, which for some instances reduces
the number of iterations actually performed .

In section 3.2, we try modifying the number of nested
CG iterations instead of modifying NbIter.

2.3 Phantom data
Preliminary results are presented on a 2D + time phan-
tom, adapted from a high-contrast Shepp & Logan phan-
tom. One of the ellipses shrinks and dilates over time to
roughly mimic a beating heart, and the acquisition condi-
tions simulate a 4D cardiac CBCT of a patient, with the
following parameters:

• 300 parallel projections over 180̊
• Heart rate: 72 beats per minute
• Total acquisition time: 10 seconds (30 projections

per second)
• x is a 128× 128 pixels ×10 frames image



3 Results

3.1 Adapting the number of iterations

We first compare the convergence speed, in terms of RMSE,
of several instances of the incremental 4D ROOSTERmethod,
with different values of the number of subsets n. Figure

Figure 1: RMSE with the ground truth of the phantom,
as a function of the number of iterations, depending on
the number of subsets n

1 shows the RMSE as a function of the number of itera-
tions. It clearly shows an increase of convergence speed
when the number of subsets increases. From figure 1, we

Figure 2: Incremental ROOSTER reconstructions with
RMSE threshold = 100. (a) Ground truth (b) n = 1 (c)
n = 5 (d) n = 20

define a threshold (here, 100) and re-run all versions of the
incremental ROOSTER, stopping the iterations when the
RMSE with the ground truth gets under the threshold.
Table 1 shows the number of iterations performed in each
case. Figure 2 shows a single frame of the 2D + time re-
construction each instance of the incremental ROOSTER
yields, and the ground truth. It allows to visually eval-
uate the quality of the reconstructions. Figure 2 shows

Table 1: Number of iterations performed by each instance
of incremental with an RMSE threshold of 100

Subsets 1 2 3 4 5 10 15 20
Iterations 10 9 7 7 6 6 5 5

that, with comparable RMSE, the reconstruction results
obtained with higher values of n are noisier around the
moving ellipse (we remind that the rest of the voxels are
averaged along time, as a result of one of the constraints,
which explains their low noise). Two possible causes can
be identified to explain this higher noise:

• incremental methods typically favor high frequen-
cies, which may amplify the noise
• Total Variation regularization was performed 10 times

with n = 1, and only 5 times with n = 20

While little can be done to mitigate the former effect, the
latter can be avoided by using a different strategy to take
advantage of the faster convergence of incremental meth-
ods: instead of reducing the main number of iterations, we
can adapt the number of nested CG iterations performed
at each step.

3.2 Adapting the number of nested CG
iterations

We now compare the convergence speed and reconstruc-
tion results of the n = 1 instance with 4 nested CG it-
erations and the n = 20 instance with 1 to 4 nested CG
iterations. Figure 3 shows the compared convergence

Figure 3: RMSE with the ground truth of the phantom,
as a function of the number of iterations, depending on
the number of subsets n

speeds of non-incremental ROOSTER (n = 1, 4 nested
CG iterations) and incremental ROOSTER with n = 20
and 1 to 4 nested CG iterations. Figure 4 shows the recon-
struction results. Even with a single nested CG iteration,



Figure 4: Incremental ROOSTER reconstructions with 10
iterations, n = 20 and a variable number c of nested CG
iterations. (a) c = 1 (b) c = 2 (c) c = 3 (d) d = 4

the n = 20 instance achieves faster convergence than non-
incremental ROOSTER. Visual evaluation confirms the
gain in image quality with respect to the first approach.

4 Discussion

The λspace and λtime parameters, as well as the formula for
computing αk, have been chosen empirically. λspace and
λtime depend on the expected visual aspect of the solution,
and on the size and resolution of the reconstructed image.
Previous work on ROOSTER [6] shows that for a given
size and resolution, a pair of λspace and λtime that yields
clinically satisfying results on one patient also works well
on another patient. The sequence of αk must be such that
∞∑
k=0

αk = +∞ and
∞∑
k=0

α2
k < +∞.

The speedup obtained by reducing the total number of
forward and back projections for the same convergence
must not be overestimated: conjugate gradient iterations
involve operations on the 4D image (sum of all voxels and
voxelwise operations), which in the incremental approach
are performed n times, adding some computation time.

5 Conclusion

Incremental 4D ROOSTER builds up on solid mathemat-
ical foundations, has a convergence proof of the function
values and has the potential to yield results visually sim-
ilar to those of the original 4D ROOSTER within fewer
forward and back projections. The preliminary results,
obtained with Matlab on 2D + time data, are promis-
ing. Incremental 4D ROOSTER will be implemented in
“The Reconstruction ToolKit” (RTK) [7], an open source
C++ software based on “The Insight ToolKit” (ITK), and
should be compared with a proximal strategy in some fu-
ture work.
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