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Résumé – En traitement d’antenne, les décompositions tensorielles permettent d’estimer conjointement les sources et de
les localiser. Pour que ces dernières puissent être utilisées, il faut que les données présentent au moins trois diversités, qui
sont habituellement le temps, l’espace, et la translation dans l’espace. L’approche présentée ici est basée sur la diversité de
polarisation, une alternative très attractive lorsque l’antenne ne jouit pas d’invariance spatiale. Nous dérivons ensuite les bornes
de Cramér-Rao dans ce contexte, en nous appuyant sur des conventions de différentiation de variables mixtes réelles et complexes.

Abstract – In antenna array processing, tensor decompositions allow to jointly estimate sources and their location. But these
techniques can be used only if data are recorded as a function of at least three diversities, which are usually time, space and
space translation. The approach presented therein is based on polarization diversity, a very attractive alternative when the
antenna array does not enjoy space invariance. Then we derive Cramér-Rao bounds in this context, by resorting to differentiation
conventions for real-complex mixed variables.

1 Introduction

Starting from the ideas on vector sensor array developed
for seismic waves in [1] from the more general model for
polarized waves in [2] and [3], we state the observation
model in tensor form. Next we compute the Cramér-Rao
Bounds (CRB) for the joint estimation of the four param-
eters of polarized seismic waves. The ultimate estimation
performances are then compared to the CRB as a func-
tion of the Signal to Noise Ratio (SNR). A deterministic
approach based on tensor decomposition has been intro-
duced in [4]. The advantage of tensor decompositions lies
in the need for shorter data records, since the estima-
tion of statistical quantities from available samples is not
a requirement (as opposed to traditional high resolution
algorithms such as MUSIC [5] and ESPRIT [6]). CRB
for the low-rank decompositions of multidimensional ar-
ray was derived in [7] and extended in [8]. Polarization
of waves has been first introduced in [9] as a multidimen-
sional diversity in the tensor approach. The same authors
in [10] explore the concept of polarization separation and
its influence on performances.

Notation We shall assume throughout the following no-
tations: matrices, column vectors and scalars are denoted re-
spectively in bold uppercase, e.g. A, bold lowercase, e.g. v,
and plain lowercase; in particular array entries are written e.g.

v
j

or A
ij

. Transposition, complex conjugation and Hermitian
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transposition are denoted by (

T
), (⇤) and (

H
), respectively. Ar-

rays with more than two indices are referred to as tensors, with
some abuse of terminology [11], and are denoted in bold calli-
graphic, as T . The outer (tensor) product between two vectors
is denoted by u⌦v. Finally, k·k

F

refers to the Frobenius norm;
⇥ denote Kronecker product. For the sake of conciseness, a

i

will represent the i-th column of matrix A.

2 Physical model

2.1 A 4-parameter far-field model

The physical quantity measured is the particle displace-

ment vector recorded by a three-component particle dis-
placement sensor (or geophone), located at a given point
in space, in the direction of the x-, y- and z-axes of its ref-
erence system. The z-axis is required to be perpendicular
to the earth’s surface. The following parameterization is
based on the definition of four angular parameters. First,
the unit vector pointing to the source is given by

u =

2

4
cos ✓ cos 
sin ✓ cos 

sin 

3

5

where ✓ 2 (�⇡,⇡] refers to the azimuth and  2
[�⇡/2,⇡/2] to the elevation of the source. Second, the
polarization ellipse is described by the orientation angle
↵ 2 (�⇡/2,⇡/2] and the ellipticity angle � 2 [�⇡/4,⇡/4].
Two models can be drawn respectively for transverse (TR)



waves and tilted generalized Rayleigh (TGR) waves [1].
For a transverse wave, the polarization ellipse lies in the
space orthogonal to the direction of propagation u, and is
spanned by the columns {v1 v2} of the matrix:

V

TR

= [v1 , v2] =

2

4
� sin ✓ � cos ✓ sin 
cos ✓ � sin ✓ sin 
0 cos 

3

5 (1)

In the TGR model, the polarization ellipse is confined in
the plane spanned by the columns of matrix:

V

TGR

= [u , v2] =

2

4
cos ✓ cos � cos ✓ sin 
sin ✓ cos � sin ✓ sin 

sin cos 

3

5

If the complex envelope of the source signal is denoted by
s(t), the general data model can be written as

y(t) = V (✓, )Q(↵)w(�) s(t) 2 C3⇥1 (2)
where V (✓, ) is one of the above matrices,

Q =


cos↵ sin↵
� sin↵ cos↵

�
, w =


cos�
ı sin�

�

in the absence of noise, and ı =
p
�1.

2.2 Seismic waves and polarization

There exist several types of elastic waves associated with
seismic activities [1]. Primary waves (or P-Waves) are
compressional elastic waves whose particle displacement
vector is parallel to the direction of propagation. For
these waves, ↵ = � = 0, which leads to a linearly polar-
ized wavefront with particle motion along the direction of
propagation u. Rayleigh Waves are elliptically polarized
surface waves. Therefore,  = 0, provided that the xy-
plane corresponds to the earth surface. For these waves,
it is obvious that ↵ = 0 and then Q = I. Secondary or
Shear waves (or S-waves) are transverse elliptically polar-
ized in general. P-Waves and Rayleigh Waves are partic-
ular cases of the TGR model described in Section 2.1 for
elliptically polarized waveforms: the direction of propaga-
tion is located in the plane spanned by the ellipse major
and minor axes. For reasons of space, we shall concentrate
on TR waves in the remainder.

2.3 Tensor model

Now suppose that data are recorded on K polarized sen-
sors located at points in space defined by vectors g(k) :=
[gx

k

; gy
k

; gz
k

] 2 R3, 1  k  K. Also suppose that R far-
field narrow-band sources impinge on this vector sensor
array from direction u(r), 1  r  R, and denote ! their
common angular pulsation. We make the assumption that
impinging waves have elliptical polarization (neither linear
nor circular). Then from (2) we can assume the following
observation model in baseband about pulsation !:

T = Z + E , Z =

RX

r=1

a(r)⌦ b(r)⌦ s(r) (3)

where a
k

(r) =

1
K

exp

�
ı!
v

g(k)Tu(r)
 

is the k-th en-
try of the steering vector, v the wave celerity, b(r) =

V (✓
r

, 
r

)Q(↵
r

)w(�
r

) 2 CL⇥1
(L = 3) characterizes the

propagation type, (✓
r

, 
r

) refers to the Direction of Arrival
(DoA) of the r-th source and (↵

r

,�
r

) its polarization, and
s
m

(r) is the signal propagating from the r-th source and
received at time t

m

, 1  m  M . The additive noise E is
assumed to be i.i.d. circular Gaussian and independent of
the sources. In terms of arrays of coordinates, model (3)
rewrites:

Z
k`m

(✓, ,↵,�,S) =

RX

r=1

a
k

(r)b
`

(r)s
m

(r) (4)

or in column vector format:

z := vecZ =

RX

r=1

a(r)⇥ b(r)⇥ s(r) (5)

3 Parameter identification

3.1 Model identification

It is always possible to decompose the data tensor into
a sum of decomposable tensors [11, 4] of the form D(r) =
a(r)⌦b(r)⌦s(r), that is, in terms of array of coordinates:

D
klm

(r) = a
k

(r)b
l

(r)s
m

(r)

Hence tensor Z takes the form:

Z =

RX

r=1

&
r

D(r) (6)

where coefficients &
r

can always be chosen to be real pos-
itive, and decomposable tensors D(r) to have unit norm,
i.e. for Lp norms, kDk = kak kbk kck = 1. The minimal
value of R such that this decomposition holds is called
rank of Z. If R is not too large, the corresponding de-
composition is unique [4, 12, 11, 13] and deserves to be
referred to as Canonical Polyadic (CP); other terminolo-
gies include rank decomposition or Candecomp/Parafac.
Note that decomposable tensors have a rank equal to 1.
Because of the uniqueness of the CP decomposition, de-
composable tensors of (4) and (6) coincide in the absence
of noise. This means that vectors {a(r), b(r), s(r)} coin-
cide up to some scaling factors [4, 8, 11].

3.2 Model identifiability

There exist sufficient conditions ensuring uniqueness of
the exact CP, e.g. the Kruskal condition [4]:


A

+ 
B

+ 
C

� 2R+ 2 (7)
where the notation 

A

refers to the Kruskal -rank⇤ of ma-
trix A. However, less stringent conditions guaranteeing
almost surely a unique solution can be found [12, 11, 13]:

R(K + L+M � 2) < KLM

⇤The Kruskal rank of a matrix A is the largest number 
A

such
that any subset of 

A

columns are lineraly independent.



This hold true when data are not corrupted by noise. How-
ever, if noise is present, we have to solve a best rank-R

approximation problem:

min

ar,br,sr

����

����T �
RX

r=1

a

r

⌦ b

r

⌦ s

r

����

����
2

F

(8)

For d � 3, the best approximation of a d-partite func-
tion of a sum of R product of d separable functions does
not exist in general [12], as a sequence of rank-r functions
can converge to a limit which is not rank-r. A sufficient
condition ensuring existence of a solution to (8) via the
definition of a physical constraint, the coherence, is de-
rived in [12]. Unlike the Kuskal rank, coherences are easy
to compute and present the advantage of having a physical
meaning, i.e. the best rank-R approximation exists and is
unique if either impinging signals are not too correlated,
or their directions of arrivals and polarization states are
not too close.

4 Performances

4.1 Mixed real-complex gradients

Since the parameter of the array processing model are
complex, a definition of the derivative of a real func-
tion h(z) 2 Rp with respect to the complex variable
z 2 Cn, z = x + ıy, x,y 2 R, needs to be introduced.
[7] presents a derivation of Cramér-Rao bounds related to
the CP decomposition of multidimensional arrays, using
the same definition of complex derivative as in [8, 14]:

@h
@z

=

1

2

@h
@x

� ı
2

@h
@y

(9)

For clarity, our notation of the derivative of a scalar func-
tion ⌥(z) with respect to a column vector z 2 Cn is:

(
@⌥
@z is a column vector
@⌥
@zT is a line vector

Given an holomorphic column vector function f(z) 2 Cm,
we define [

@f
@zT ]ij =

@fi

@zj
so that

(
@fT

@z is an n⇥m matrix
@f
@zT is an m⇥ n matrix

In the sequel, we shall need a complex derivative chain
rule. Given a scalar function ⌥(z) 2 R, a complex func-
tion z(✓) = x + ıy 2 Cp, and a real variable ✓ 2 Rq, we
have from the real derivative chaine rule:

@⌥

@✓T
=

@⌥

@xT

@x

@✓T
+

@⌥

@yT

@y

@✓T

which, using (9), yields the chaine rule:

@⌥

@✓T
= 2<

⇢
@⌥

@zT

@z

@✓T

�
(10)

4.2 Gradient calculation

In order to compute Cramér-Rao bounds, we shall need
the gradients of the log-likelihood, which turn out to be
the same as those of the cost function f defined below,
deduced from (5), if noise is i.i.d. circular Gaussian:

f(#) =
1

�2
n

kt� z(#)k22 , # := [✓; ;↵;�; vecS; vecS

⇤
]

(11)
where �2

n

denotes its variance. The gradient expressions
will also be subsequently useful to implement descent al-
gorithms. According to the chain rule (10) and definition
(9), the partial derivatives of the cost function with re-
spect to DoA parameters are given by

@f
@✓

r

= 2<
⇢
@f
@aT

r

@a
r

@✓
r

+

@f

@bT
r

@b
r

@✓
r

�
,
@f
@↵

r

= 2<
⇢
@f

@bT
r

@b
r

@↵
r

�

@f
@ 

r

= 2<
⇢
@f
@aT

r

@a
r

@ 
r

+

@f

@bT
r

@b
r

@ 
r

�
,
@f
@�

r

= 2<
⇢
@f

@bT
r

@b
r

@�
r

�

with

@f
@aT

r

=

 
z �

RX

r=1

a

r

⇥ b

r

⇥ s

r

!H

(�I

K

⇥ b

r

⇥ s

r

)

@f

@bT
r

=

 
z �

RX

r=1

a

r

⇥ b

r

⇥ s

r

!H

(�a

r

⇥ I

L

⇥ s

r

)

@f
@sT

r

=

 
z �

RX

r=1

a

r

⇥ b

r

⇥ s

r

!H

(�a

r

⇥ b

r

⇥ I

M

)

@a
r

@✓
r

=

h
ı
!
v
(�gx

k

sin ✓
r

cos 
r

+ gy
k

cos ✓
r

cos 
r

)A
kr

i
K

k=1

A
kr

=

1
K

exp

�
ı!
v

[gx
k

cos ✓
r

cos 
r

+ gy
k

sin ✓
r

cos 
r

+ gz
k

sin 
r

]

 

@b
r

@✓
r

=

@V
r

@✓
r

Q

r

w

r

,
@b

r

@ 
r

=

@V
r

@ 
r

Q

r

w

r

@V TR

r

@✓
r

=

2

4
� cos ✓

r

sin ✓
r

sin 
r

� sin ✓
r

� cos ✓
r

sin 
r

0 0

3
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r
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ı
!
v
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r
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i
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r
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4
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r
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@b
r

@↵
r

= V

r

dQ
r

d↵
r

w

r

,
@b

r

@�
r

= V

r

Q

r

dw
r

d�
r

dQ
r

d↵
r

=


� sin↵

r

cos↵
r

� cos↵
r

� sin↵
r

�
,

dw
r

d�
r

=


� sin�

r

ı cos�
r

�

4.3 Cramér-Rao Bounds

Cramér-Rao Bounds (CRB) represent the lower bound on
the variance of any unbiased estimator of a deterministic
parameter. Define the Signal-to-Noise ratio (SNR) as [7]:

SNR = 10 log10
kZk2

F

KLM�2
n



where operator k · k2
F

indicates Frobenius norm. For a
zero-mean, circularly complex Gaussian noise with covari-
ance �2

n

I the log-likelihood takes the form (11) up to an
additive constant. Then, the mixed real-complex Fisher
Information Matrix (FIM) can be shown to be given by
[7, 8]:

�(#) = E
(✓

@f(#)

@#

◆H✓
@f(#)

@#

◆)

The CRB of any unbiased estimator of a vector param-
eter # is is given by the inverse of the FIM. It is useful
to separate parameters to be estimated in three vectors:
one real, [✓; ;↵;�], and two complex, vecS and vecS

⇤.
With this organization, the FIM has 9 blocks [8]:

� =

1

�2
n

0

@
2<{G11} G12 G

⇤
12

G

H
12 G22 0

G

T
12 0 G

⇤
22

1

A

where G

ij

=

⇣
@z
@#i

⌘H⇣
@z
@#j

⌘
.

5 Computer experiments

Signals were simulated according to realistic sampling con-
ditions (1kHz sampling frequency, M = 42 time samples,
K = 9 sensors, L = 3 polarization components). Ultimate
performances have been evaluated by running a gradient
descent initialized with the true values slightly corrupted
by noise. A comparison with deterministic CRB is shown
in Figure 1. The performance criterion is the total mean

square error (total MSE) of each DoA and polarization
parameter #: 1

N

P
N

n=1

P
R

r=1(
ˆ#
rn

�#
r

)

2, where ˆ#
rn

is the
estimated parameter of the r-th source at the n-th Monte-
Carlo trial, N = 99 is the number of trials. The number
of simultaneous sources was chosen to be R = 2, with the
following parameters:

(
✓1 = �⇡/3, ✓2 = ⇡/6,  1 = �⇡/4,  2 = ⇡/7

↵1 = ⇡/5, ↵2 = ⇡/7, �1 = �⇡/7, �2 = ⇡/5
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Fig. 1: MSE vs SNR

CRBs are obtained by summing the diagonal entries in
the inverse of the first block, 2<{G11}, in the FIM. This

means source signals were considered as known and not as
nuisances (which implies the obtention of slightly smaller
bounds).
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