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Résumé – En EEG intracérébral (SEEG), les oscillations hautes fréquences (HFOs) au delà de 250Hz, plus connues sous le nom de Fast Ripples
(FRs), sont considérées comme étant fortement liées aux tissus cérébraux capables de provoquer des crises épileptiques. L’analyse visuelle des
FRs est longue et difficile et peut être facilitée par la représentation en temps-fréquence. Nous avons testé 5 méthodes de pré-blanchiment des
signaux et de normalisation du plan (t,f) en vue d’améliorer la représentation de ces activités. Nous avons détecté tous les maxima locaux de
l’image (t,f) dans la bande des HFOs supérieurs à un seuil balayant un certain intervalle. Le critère de performance est basé sur l’aire sous la
courbe des courbes de précision et rappel. Nous avons montré que le pré-blanchiment des données est plus efficace que la normalisation de la
représentation (t,f) et que la différentiation rétrograde de première ordre donne les meilleures résultats.

Abstract – On intracerebral EEG (SEEG), High Frequency Oscillations (HFOs) above 250Hz, also known as Fast-Ripples (FRs), are considered
to be highly representative of brain tissues capable of producing epileptic seizures. The visual review of FRs is time-consuming and tedious,
and can be improved by time-frequency analysis. We tested 5 methods of data prewhitening and (t,f) normalisation in order to improve the
time-frequency representation of fast ripples. We detected all local maxima of the (t,f) image above a range of thresholds in the HFO band. The
performance criterion was based on the area under the curve of the Precision and Recall curves. We showed that data prewhitening was more
efficient than (t,f) normalisation and that overall the first-order backward differencing exhibited the best results.

1 Introduction

Over the past decade, High Frequency Oscillations (HFOs)
in brain areas have been the subject of numerous studies in
neuroscience. HFOs are thought to be a biomarker of the epi-
leptogenicity of brain tissues [1, 2]. They are divided into two
groups: ripples (80–250Hz) and fast-ripples (FR)(250–500Hz).
Ripples are supposed to be physiologic whereas FRs are some-
times presumed to be pathological. Manual marking of FRs in
stereoelectroencephalography (SEEG) signals is time-consu-
ming and inevitably subjective because of their short time du-
ration and low amplitude. Improving the representation of the
SEEG signals by using an appropriate time-frequency repre-
sentation [3, 4] would be useful. More recently, automatic HFO
detectors have incorporated time-frequency representations as
a key feature [5, 6]. Because SEEG signals have a spectrum
with a 1/fα decay (f being the frequency), data preprocessing
or (t,f) image normalisation is required.

We tested 5 commonly used methods – two methods of data
prewhitening and three methods of (t,f) normalisations – on
their precision to represent FRs. These methods were applied

to simulated data with real background activity recorded in
SEEG.

2 Methods

2.1 Simulated Data
In order to compare the different methods, simulated signals

corresponding to five event types were generated. The different
types are the following: {s1[n]} background activity, {s2[n]}
background activity with artificial artefact, {s3[n]} background
activity with a simulated epileptic spike, {s4[n]} background
activity with a simulated FR and finally {s5[n]} background
activity with a simulated spike and simulated FR. The spike, the
fast-ripple and the artefact occur at tEP = 50ms, tFR = 155ms
and tART = 375ms respectively.

The piece of human background activity was randomly se-
lected from a collection of recordings (sampling frequency:
2048Hz) which was previously labeled as background, i.e si-
gnal without one of these elements of interest, from several
patients and several brain areas. These recordings were perfor-
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FIGURE 1 – Effect of the prewhitening methods applied to a patient recording
All the prewhitening methods were applied to each electrodes of a patient. The spectra are displayed in loglog. The thick black, cyan and red lines correspond to the
average spectrum, the fit with a power-law function (1/fα) for the lower frequencies and the HFO band respectively. The slope was obtain by linear regression.
The difference in the slope of the original spectrum compared to the spectra of the prewhiten signal indicates the effects of the filters. It is noteworthy that the
spectrum has two different slopes, one describing the lower frequencies and another describing the FR band.

med on patients undergoing pre-surgical evaluation of drug re-
sistant epilepsy with SEEG. For standardisation, the collection
of backgrounds were normalised by dividing each signal by its
own standard deviation (STD) and multiplied by the median
STD of the collection to resemble real data. Unlike previous
studies, the STDs were not computed on raw data but on data
which were digitally bandpass-filtered (4th-order Butterworth)
in the fast-ripple band. The Signal-to-Noise Ratio (SNR) was
also calculated on the filtered data on the time duration of the
FR. This approach is motivated by the fact that SEEG signals
have a spectrum with a 1/f decay in the FR band (cf. Fig. 1).
Each event was generated in a 500-ms window. Epileptic spikes
were simulated using the spline function of MATLAB which
interpolates the curves between specific points taken from a
real epileptic spike. The width of the spike randomly chan-
ged across trials. Its amplitude was set to be proportional to
the STD of the background. The fast ripple was set to 350Hz
with a duration of four periods. To avoid edge effect, the spike
and the FR were windowed beforehand and then added to the
background. The artefact was simply generated by increasing
a single point by a certain level. This level corresponds to five
times the STD of the chosen background. Examples of the five
events are shown in Fig. 2.

The different prewhitening methods were applied in the time
domain.

– The Diff method consists in a first-order backward diffe-
rencing [7]. Let s̃ be the prewhiten signal.

s̃[n] = s[n]− s[n− 1] (1)

– The autoregressive integrated moving average (ARIMA)
prewhitening computes the coefficients of a pth-order AR
model (lpc function in MATLAB) on the qth-degree diffe-
rentiated signal and filters the signal with the coefficient
of the AR model. Several parameters were tested and this
following set (1,1,0) gave the best results.

The Time-Frequency representation (referred to as {tf [n,m]},
with n and m corresponding to the time index and frequency in-
dex respectively) is obtained by applying a wavelet transform
on the prewhiten signal and taking its square modulus. The wa-
velet used is a common Gabor wavelet with an oscillation pa-
rameter of 10.

Normalisation methods were applied to the (t,f) image.
– The z-score was applied to the square modulus using the

mean µi and the STD σi of either a baseline or the event
itself over time and for each frequency taken separately.
The two types of z-score will be further named as
zbaseline and zevent. The baseline was taken in the same back-
ground but in a time-shifted window.

tfzi [n,m] =
tf [n,m]− µi[m]

σi[m]
(2)

– The Teager-Kaiser Normalisation computes on the mo-
dulus the Teager-Kaiser Operator Energy (TKEO) over
time and for each frequency taken separately. .̄ denotes
the complex conjugate.

tfTKEO[n,m] = tf [n,m]tf [n,m]+ (3)

1

2
tf [n− 1,m]tf [n+ 1,m] +

1

2
tf [n− 1,m]tf [n+ 1,m]

The methods are illustrated in Fig. 2. An illustration of the
impact of the filters is represented in Fig. 1.

2.2 Method Quantification
To capture how relevant the representations are, we want

to quantify how the oscillations are separated from the back-
ground activity. It is known that oscillations appear as blobs in
the (t,f) image. While analysing visually such representations,
we pay attention to the local maxima rising above the noise le-
vel. The method proposed here is to detect all local maxima
in the HFO band, spanning a range of thresholds. 30 events of
each type were generated. All peaks were normalised between
0 and 1 for each method. The peaks were labeled as True Po-
sitive (TP), False Positive (FP), True Negative (TN) and False
Negative (FN).

TPs are local maxima which are above the threshold and are
our peaks of interest, i.e local maxima of all signals s4 and s5
which are above the threshold and are in the confidence zone.
The confidence zone was set as being the zone of the image
where the blob of the FR should theoretically appear. It is a
square zone centered in (162ms, 350Hz) with a time width of
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FIGURE 2 – Examples of simulated events and their different (t,f) representations.
Each column represents an event type and each row a prewhitening or (t,f) nomalisation method. The colourmaps were set from 0 to the value of the highest peak
of the set of events for each technique. AR prewhitening, zevent and TKEO normalisation seem to be more sensitive to noise since it generates higher blobs from
the background. The artefacts generate long lines whose height increases along the frequency but no local maxima. Only the Diff method, the zbaseline and TKEO
normalisation display triangular shapes corresponding to the spikes in the events s3 and s5.

σt and a frequency width of σf . σt was calculated using the
expression: ξ = 2fσt with ξ the oscillation parameter and f the
frequency of the oscillation. σf was heuristically set to 30Hz
as being the accepted error on the frequency of the oscillation.
FPs are local maxima which are above the threshold but are not
our peaks of interest, i.e local maxima of all signals s1, s2 and
s3 which are above the threshold plus those of all s4 and s5
above the threshold which are not in the confidence zone. TNs
are local maxima which are not above the threshold and are not
our peaks of interest, i.e local maxima of all signals s1, s2 and
s3 which are not above the threshold plus those of all s4 and s5
under the threshold which are not in the confidence zone. FNs
are local maxima which are not above the threshold but are our
peaks of interest, i.e local maxima of all s4 and s5 which are
not above the threshold but are in the confidence zone.

Receiver Operating Characteristic (ROC) and Precision and
Recall (PR) curves are obtained by calculating the True Posi-
tive Rate (TPR) or Recall, the False Positive Rate (FPR) and
the Precision or Positive Predictive Value (PPV).

The Area Under the Curve (AUC) of the PR curves was used
as a ranking criterion. This method was repeated 30 times for
each SNR. The different SNRs were chosen according to the
range seen in real data. These SNRs were calculated on events

marked using automatic detector [7]. The STD of the oscilla-
tion was obtained by decomposing the signal using the Em-
pirical Mode Decomposition (EMD) [8] and taking the mode
corresponding to the fast ripple. The obtained signal was che-
cked on (t,f) representation before and after decomposition.
The STD of the noise was computed on two pieces of filtered
background before and after the FR occurrence with overall
length of the oscillation. The SNR of the real data were found
to lie between 0 and 17dB with a median value of 9dB.

3 Results and Discussion
In Fig. 1, FRs hardly stand out of the noise. This observation

is consistent with our motivation: signal processing is needed
to visualise FRs. Methods such as the Coarse Graining Spec-
tral Analysis could be used to separate the harmonic/oscillatory
from the fractal/1/fα components of the spectrum [9] but only
on the sections of recordings already marked as containing FRs
because of their short duration and scarcity. Moreover, the ori-
ginal spectrum fits two power laws of coefficients 3 and 1 for
the frequency range of 10-200Hz and 250-500Hz – the FR band
– respectively. The two filters tends to flatten the spectrum and
inverse the slope of the FR band.



Because of the high number of negative events (N) the ROC
curves are pushed to the left part of the graph and are not discri-
minative. In contrast, the PR curves highlight differences bet-
ween the methods [10]. In a clinical setting, it seems interesting
to address the proportion of TP within all detection regardless
of N. PR curves are therefore preferred for further analysis.
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FIGURE 3 – Box and whisker plot of the AUC of the original
signal and the five techniques for several SNRs.
Generally, all methods show better results when the SNR increases. All me-
thods exhibit poor performances for SNRs below 5dB without having one me-
thod being significantly better than another one. The zevent shows a decrease
in performance for SNR = 20dB. In most cases, the Diff method exhibits the
best results followed by the ARIMA prewhitening.

Box and whisker plots of the AUC of the original signal and
the 5 methods are represented for 5 different SNRs in Fig. 3.
Fig. 3 a which corresponds to the normal TF representation wi-
thout normalisation nor prewhitening preprocessing shows the
worst performance overall except for the ideal case, SNR=20dB.
This is consistent with the aim of this study. All methods ex-
hibit poor performances for SNRs below 5dB without having
one method being significantly better than another one. This is
not the case for larger SNRs. The Diff method demonstrates
the highest performance for SNRs higher than 10dB followed
closely by the ARIMA prewhitening. It is noteworthy that there
is an inversion for the two z-score methods. The zbaseline is less
efficient than zevent for an SNR of 15dB but more efficient for
SNRs higher than 20dB. The TKEO normalisation seems to
improve as well when the SNR increases. It is interesting to
note that the prewhitening methods achieve better results than
(t,f) normalisation approaches. Moreover, one asset of the Diff
method compared to the ARIMA method is that it is not de-
pendent of the data and could be directly applied to a whole
recording.

4 Conclusion
The current study aims at finding the most relevant tech-

niques of representing FR in time-frequency analysis. PR cur-
ves were adopted because they gave more meaningful results.
Overall, the Diff method exhibited the best results. More ge-
nerally, the prewhitening methods were more efficient than the
commonly used time-frequency normalisation. One should bet-
ter prewhiten data before producing a time-frequency represen-
tation than normalising a posteriori the (t,f) image. Future work

will take into account the shape of the blobs as well as the re-
presentation of the spikes.
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