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Résumé – Pour la segmentation d’images, différentes méthodes ont été proposées pour segmenter une image à partir
d’estimateurs de Parzen des distributions d’intensités, par exemple la distance de Bhattacharyya, de Kullback-Leibler, ou la
log-vraissemblance. Nous comparons plusieurs méthodes couramment utilisées et montrons que les méthodes basées sur la log-
vraissemblance sont les plus robustes, et en particulier sont exemptes de problèmes de bords rencontrés dans toutes les autres
méthodes testées. Ces résultats donnent des indications claires sur quelles méthodes doivent être préférées et nous avançons
quelques arguments théoriques dans cette direction.

Abstract – In image segmentation, level-set methods discriminating regions with Parzen estimates of their intensity distributions
have proven useful in a broad variety of contexts. A number of area cost terms have been proposed to achieve this goal, such as log-
likelihood, Bhattacharyya coefficient, Kullback-Leibler divergence and several others. In this work we compare the performance
of the most widespread criterions and show that log-likelihood and assimilated methods have a clear advantage in terms of
robustness. In particular, the other methods tested suffer from a boundary instability due to small region/small initialization/hard
to distinguish regions. We also give some theoretical arguments supporting our experimental results on synthetic and real images.

1 Introduction

Several methods have been proposed to segment image via
estimates of their intensity distribution. Some methods
maximize the likelihood that the contour divides the image
into two distinct areas [1]. Other methods tend to make
the distributions in the two areas as different as possible,
according to some measure of a distance between distribu-
tions. The measure may be the Hellinger distance [2, 3, 4],
the Kullback-Leibler divergence [2, 5], the L2-norm on cu-
mulated distribution functions [6]. However, little infor-
mation is available about the efficiency, robustness and
specificity of these various methods. In the following we
compare the robustness and accuracy of a pool of meth-
ods on images where the target and background areas are
difficult to distinguish, a practical problem which arises
for example in medical imaging.

2 Notations and problem

We consider the problem of segmenting an image into two
areas Ω1 and Ω2. In the following we consider only stan-
dard images in two dimensions but the conclusions are
valid in any dimensions. The level-set method is a type
of active contour method [7] where the region Ω1 is de-
limited by the zeros of a level-set function φ(x), such that
Ω1 = {x|φ(x) ≥ 0} and Ω2 = {x|φ(x) < 0} where x spans
the image coordinates. The segmentation problem is then

formulated as an optimization problem, assuming that the
target segmentation minimizes:

E[φ] = α

∫
dx δφ(x)‖∇φ‖+ βEDA[φ] (1)

where the integration over x covers the entire image. The
energy contains a regularization term with coefficient α
ensuring smoothness of the contour and a data attach-
ment term, with coefficient β. In this article we focus on
the methods where the data attachment term EDA tends
to split the image into Ω1, Ω2 where the intensity distri-
butions differ as much as possible. Then, the contour is
obtained as the stationary solution of a gradient descent
∂tφ(x) = −δE[φ]/δφ(x) for some appropriate initial con-
dition.

In all the non-parametric methods we consider here,
the distributions of intensities in region Ω1 and Ω2 are
supposed to be unknown during the segmentation process
and have to be estimated at each time using Parzen esti-
mates [8]:

P̂1(I) =
∫

Ω1
dx Kσ(I(x)− I)/A1 (2)

where Kσ is a Gaussian distribution of fixed width σ and
A1 is the area of Ω1. A similar estimate is given for P̂2(I).
Given these distributions, a number of data attachment
terms EDA can be proposed, listed in table 1.

The measures we consider fall into two distinct cate-
gories: the first one CI = {(LL), (EE)} rely on a statisti-
cal framework. The (LL) method quantifies the likelihood



of a given contour, based on a maximum a posteriori es-
timate. This method is also related to the mutual in-
formation between the contour and the image [1] and is
also related to the extensive entropy (EE) [9]. The sec-
ond category CII = {(BC) . . . (L2)} of methods consider
the respective distributions in the two domains, P̂1(I) and
P̂2(I), and tends to make them differ as much as possible.
Various quantities have be proposed to achieve this, and
we only list a few.

Max. a posteriori Log-likelihood (LL) [1]:

−
∑
x∈R1

log(P1(Ix))−
∑
x∈R2

log(P2(Ix))

Extensive entropy (EE):

−A1

∑
I

P1(I) log(P1(I))−A2

∑
I

P2(I) log(P2(I))

Bhattacharyya coefficient (BC) [8]:∑
I

√
P1(I)P2(I)

Hellinger distance (HD) [2]:
√

1−B
Kullback-Leibler divergence (KL) [2, 5]:
1

2

∑
I

P1(I) log
P1(I)

P2(I)
+

1

2

∑
I

P2(I) log
P2(I)

P1(I)

Kolmogorov-Smirnov statistic (KS):
sup
I
|C1(I)− C2(I)|

L2 difference (L2):∑
I

(P1(I)− P2(I))2

Tab. 1: Data attachment energy EDA for the different
methods compared here. Type CI/CII methods are in
light gray/dark gray respectively. Notice that all criterion
(except for BC) must be maximized, so we take EDA as
minus those quantities (plus for BC). C1(I), C2(I) are the
cumulative distribution functions associated with P1(I),
P2(I).

3 Comparison of the different data
terms

3.1 Experiment layout

We first compare the various data terms in a controlled
setting. We consider synthetic images formed of i. i. d.
random variables with two different distributions in two
target regions T1 and T2, as shown in figure 1. In order to
understand precisely the properties of the data terms, we

Fig. 1: Random image with target areas T1 and T2 with
target boundary at coordinate xT . A trial contour is
shown at position x.

x

0 50 100 150 200

E
(x
)

-1

-0.8

-0.6

-0.4

-0.2

0

xT

Fig. 2: Energy EDA(x) for the log-likelihood criterion
(LL) as a function of contour position x. The level-set
algorithm is a gradient descent in EDA(x). The direction
of the flow is indicated with arrows.

consider a simplified numerical experiment in which the
smoothing term is excluded. We suppose that T1, T2 are
vertical bands and we put the hard constraint that the
contour is a vertical line parametrized only by its position
x.

For one realization of the random image, one can com-
pute the data term EDA(x) as a function of the boundary
position x as depicted in figure 2. The segmentation is
performed, finding the global minima of EDA(x) for all x.
The level-set method does a gradient descent of the data
term EDA(x).

3.2 Non-monotonicity of the gradient flow

Since the energy is dependent on the image realization,
we show the average of EDA(x) for different methods in
figure 3. Unlike in the case shown previously, the data
term EDA(x) is not a monotonous function of x for (BC)
and (L2) criteria. As a result, if the initial contour xi is
too close to the boundaries, the gradient descent drives the
contour in the wrong direction and the gradient descent
diverges. We find that this phenomenon occurs for all
distances in the class CII , and not for CI methods. A
qualitative explanation is given in section 5. This effect
is stronger when the area of one of the regions T1, T2 is
small, or when the two distributions are more difficult to
distinguish.



x

50 100 150 200

E
(x
)

-1.5

-1

-0.5

0

xT

BC

LL

L2

Fig. 3: Average energy EDA(x) (over many random im-
age realizations) as a function of contour position x for
three criterion (BC), (LL) and (L2). EDA(x) is shifted
and rescaled for readability. EDA(x) reaches a local min-
imum for x = xT for all considered methods. However,
there are additional minima at the boundaries for (BC)
and (L2) methods. The direction of the gradient descent
flow is indicated with arrows for method (BC). One can
see that the method does not converge to the correct result
for initial points in the red areas.

4 Comparison on synthetic images

In this section, we consider the full gradient descent of
energy (1) with a level-set formalism. The smoothing pa-
rameter is set to its optimal value for the problem at hand,
α = {2, 3}.

We find that the different methods yield good results
for simple cases with very well-distinguished regions, thus
we focus on the more difficult cases. For definiteness we
focus on the two representative methods of CI and CII ,
the (LL) and (HD) methods. We use a synthetic image
again with a square target area T1 in a larger background
region T2 with Gaussian intensity distributions of average
and standard deviation µ1 = µ2 = 6, σ1 = 2.2, σ2 = 1.5.

4.1 Final contour

For initial contours close to the target contours, in the
case where all methods converge, we find that the (LL)
method provides a significantly better segmentation than
the (HD) method, as shown in figure 4.

Over a large number (100) of random image realizations,
the medium pixel misclassification ratio R = A(Ω1 ∪ T1−
Ω1 ∩ T1)/A(T1) is of 17.8% for the (LL) method and 41%
for the (HD) method. Moreover, in our test the error
with (LL) is lower than that with (HD) for each single
run. The histogram of R is shown in figure 4, showing
that the outcome is much more fluctuating for (HD) and
that divergence occasionally occurs.

4.2 Convergence/divergence

According to our results in the previous sections, with
the (HD) distance the gradient flow should not always

Fig. 4: Left panel: Results of the (HD), (LL) methods
compared with the target contour T1 (white line). Right
panel: Histograms of the misclassification R (in %) for
the (HD) and (LL) methods over 100 images. 100% error
means divergent outcome.

Fig. 5: Four contours with increasing time (black to light)
for the (LL) method (left) and the (HD) method (right).
The initial contour is on a grid of large squares. For (LL)
the contour converges towards the target area T1 (white
dashed line). For the (HD) method the contour shrinks
down to a point (divergence).

be monotonous and can drive the contour in the opposite
direction than the expected one. This leads to instabilities
where one of the areas shrinks down to zero. As shown
previously in figure 3, the gradient descent is divergent if
the initial contour lies too far from the target boundaries.

We have observed a similar behavior in images, where a
simple initial contour encircling the target area converges
like in figure 4. On the other hand, a divergent behavior
may occur for different initial contours, like a square grid
shown in figure 5. For the (LL) method, we find that the
gradient descent converges for a much broader range of
initializations and provides consistent results.

5 Rationale

We now give a qualitative explanation of the divergence in
CII methods. The divergence occurs whenever one of the
two segmented regions (say Ω1) is relatively small, and
thus the statistical estimate P̂1(I) is not representative
of the true distribution in the target area T1. In this
case, shrinking the area Ω1 causes larger fluctuations in
the distribution P̂1(I). As illustrated in figure 6, the (L2)
distance between the two regions Ω1 and Ω2 is increased.
The decrease of (L2) distance yields an incorrect behavior,
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Fig. 6: Illustration of the divergence. Histograms on the
two regions Ω1, Ω2 before (P̂1(I)b) and after (P̂1(I)a) the
area Ω1 is shrunk. We assume that A2 � A1 and thus
P̂2(I) is weakly changed. The (L2) distance is increased
from 0.05 to 0.26 by the change of boundary. In this exam-
ple, due to the low number of samples, some histograms
(I = 3, 5) are emptied by the change of boundary, increas-
ing the (L2) distance. Furthermore, the other intensities
(I = 4) may over-represented and further increase the dis-
tance. We show histograms for the sake of clarity, but the
same holds for Parzen estimates of the distributions.

since the region Ω1 should be expanded, not decreased
further. This argument explains the gradient flow towards
the boundaries of the image, shown in figure 3, and the
collapse of the (HD) method in figure 5. Any method of
type CII is subject to this problem. On the other hand,
the CI method rely on a statistical method which is aware
of the respective sizes of the two regions (for example,
the entropy criterion (EE) is extensive, i. e. scales like
the area) and therefore of the statistical relevance of the
estimates P̂1(I), P̂2(I).

6 Conclusions
We have compared different methods of segmentation based
on intensity distributions and found that the methods
based on likelihood of the contour are stable whereas meth-
ods involving a distance between distributions may di-
verge. Further study is necessary to extend these results
beyond Gaussian distributions, and to investigate the per-
formance as a function of the size of the region of interest.
Nevertheless, it appears that the log-likelihood methods
rely on a safer theoretical background and have better
efficiency, thus we believe that, should the above results
be confirmed in a broader variety of contexts, the log-
likelihood method should be preferred in practical appli-
cations for best robustness.
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