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Résumé – La complétion de données manquantes dans des matrices structurées sous contrainte de rang est un problème
d’optimisation non convexe. Une relaxation convexe a été récemment proposée et est basée sur la minimisation de la norme
nucléaire (somme des valeurs singulières). Il reste à prouver que ces deux problèmes d’optimisation conduisent bien à la même
solution. Dans cette contribution, nous étendons les résultats existants pour des matrices Hankel réelles particulières à des
matrices Hankel générales complexes, puis à des matrices quasi-Hankel.

Abstract – The completion of structured matrices with missing data under rank constraint is a non convex optimization prob-
lem. A convex relaxation has been recently proposed in the case of Hankel matrices, and is based on nuclear norm minimization
(the sum of singular values). It remains to prove that the two optimization problems indeed lead to the same solution. In this
contribution, existing results on particular real Hankel matrices are extended to general complex Hankel matrices, and then to
quasi-Hankel matrices.
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1 Introduction
The problem of completing matrices with missing entries
can be traced back to the works of Prony in 1795, and
has been addressed since in various fields including: sys-
tem identification and control [8, 9, 15], graph theory [17]
collaborative filtering [3], compressed sensing [4, 5, 11] in-
formation theory [10], chemometrics [2], seismics [13], esti-
mation problems and sensor networks [3], to cite a few. It
also appears as a subproblem in the computation of sym-
metric tensor Canonical Polyadic (CP) decompositions [1].

1.1 Matrix completion

We are interested in affine matrix structures (affine maps
CN → Cn×n) of the form

S (p) = S0 +

N∑
k=1

pkSk,

where Sk ∈ Cn×n are known matrices.
Typically, matrix S0 represents the known part of a

matrix, and the Low-Rank Matrix Completion (LRMC)
problem consists in finding the vector p so as to minimize
the rank of S (p). A convex relaxation of this minimiza-
tion problem can be obtained by replacing the rank by the
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nuclear norm (sum of singular values) [16]:

p̂ = arg min
p∈CN

‖S (p)‖∗ (1)

Our goal is to find when the two minimization problems
(i.e. rank and nuclear norm) yield the same solution.

Most results in the literature (e.g., [16, 11]), are proved
for random structures. To our knowledge, for fixed struc-
ture there exists only one result [7], in a very simple case:
Theorem 1 ([7, Th.1]) Let S be the Hankel structure

S (p) =


1 λ · · · λn

λ λ2 . .
.

p1
... . .

.
. .
. ...

λn p1 · · · pn−1

 ,
where λ ∈ (−1; 1). Then the solution of (1) (with con-
straint p ∈ Rn−1) is unique, is given by pk = λn+k, and
coincides with a minimal rank (rank-1) completion.

In this paper, we extend Theorem 1 in two directions:
(i) to arbitrary Hankel complex matrices; and (ii) to quasi-
Hankel matrices, which are particularly interesting in the
context of symmetric tensor CP decomposition.

1.2 Symmetric tensor CP decomposition
Consider a symmetric tensor T of order d and dimension
m as an array of numbers with d indices, each varying in



the range {1, . . . ,m}. The CP decomposition is:

Tij..k =

R∑
r=1

ai(r)aj(r) .. ak(r) (2)

The minimal number R of terms that are necessary to
have an exact fit is called the symmetric tensor rank of T .

The CP decomposition is also equivalent to Waring de-
composition of a homogeneous polynomial as a sum of
powers of linear forms [6]. This equivalence allows to
describe the link between (2) and the LRMC for quasi-
Hankel matrices [1] (we omit it due to space limitations).

1.3 Quasi-Hankel matrices
In the remainder, we shall use multi-indices, which offer a
more compact notation [6]. First, for a multi-index α =
(α1, α2, · · · , αm) ∈ Nm, the monomial xα1

1 xα2
2 ..xαm

m will
be denoted as xα, and its degree is |α| =

∑
` α`.

Next, we shall denote by N(m,d) ⊂ Nm the set of multi-
indices {α ∈ Nm : |α| ≤ d}. For setsA,B ⊂ Nm, we define
their Minkowski sum as A+ B := {α+ β |α ∈A,β ∈B},
with a shorthand notation 2A := A+A. It is easy to see
that N(m,d1) + N(m,d2) = N(m,d1+d2). For m = 1, we have
that N(1,d) = {0, . . . , d} and {0, . . . , d1} + {0, . . . , d2} =
{0, . . . , d1 + d2}. For m = 2, an example is shown in
Fig. 1 (the multi-indices are depicted as black dots).
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Fig. 1: Minkowski sum of N(2,2) and N(2,2).

Finally, let A = {α1, . . . ,αM} ⊂ Nm be an ordered set
of multi-indices (according to a certain degree-compatible
multi-index order), and {hα}α∈2A ⊂ C be an indexed set
of numbers. Then the quasi-Hankel matrix is defined as

HA(h) := [hαi+αj
]M,M
i,j=1

For example, for A = N(1,d) = {0, . . . , d}, M = d+ 1 and
the quasi-Hankel matrix is the ordinary Hankel matrix

HA(h) = [hk+l]
d,d
k,l=0 =


h0 h1 · · · hd

h1 h2 . .
.

hd+1

... . .
.

. .
. ...

hd hd+1 · · · h2d

 . (3)

For A = N(2,2) (and 2A = N(2,4), as in Fig. 1), the quasi-
Hankel matrix has the form

HA(h) =


h00 h10 h01 h20 h11 h02
h10 h20 h11 h30 h21 h12
h01 h11 h02 h21 h12 h03
h20 h30 h21 h40 h31 h22
h11 h21 h12 h31 h22 h13
h02 h12 h03 h22 h13 h04

 . (4)

1.4 The matrix completion problem
The completion problem we consider is the following:
Given A = N(m,d) and the values of {hα}α∈A, hα ∈ C,
we aim at minimizing the rank of HA(h) (by optimizing
over the remaining elements {hα}α∈2A\A). For example,
in (3), only the values h0, . . . , hd shown in gray are known
and hd+1, . . . , h2d are to be completed. In the general case,
the upper block-triangular part of the matrix is known
(e.g., in (4) it is shown in gray).

The completion problem can be easily put in the nota-
tion of Section 1.1, in terms of S (p): S0 coincides with
the matrix HA(h) containing all the known elements (and
others set to zeros), and Sk are matrices of zeros and ones,
with ones put in the positions of unknown elements. For
example, for m = 1, the matrices Sk, k ≥ 1, have zero
elements except on the (M + k)th antidiagonal. For an
explicit derivation of Sk in the general case see [18].

2 Optimality conditions
The main idea of the paper is to consider the cases when
the solution to the rank minimization problem is known,
and to check that this solution is also a solution of (1).

For this, we use an optimality condition from [18], which
is a modified first-order optimality condition suitable for
the complex-valued case (a real-valued version of this con-
dition was used in [7]). First, we define the matrix

S :=
[
vec(S1) . . . vec(SN )

]
, (5)

and for a matrix P ∈ Cn×n we define
A (P ) := ST((I − P )⊗ (I − P )) ∈ RN×n

2

, (6)
where ⊗ denotes the Kronecker product.
Proposition 2 Let p∗ ∈ Cn, Sk are real and symmetric,
(for k ∈ {1, . . . , N}), and S (p∗) = UΣV H be an SVD.
Then the point p∗ is a minimum of (1) iff ∃M ∈ Cn×n
such that ‖M‖2 < 1 and

A (P ) vec(M) = −ST vec(B) (7)
is satisfied, where B := UV H, and P := UUH is the
orthogonal projector onto the column space of S (p∗).
If, in addition to (7) it holds that rank{A (P )} = N ,

then the point p∗ is the unique minimizer of (1).
It is easy to prove that conditions of the proposition are
satisfied for a special class of projectors.

Lemma 3 Let r, s be such that r ≤ s ≤
(
m+b d2 c
m

)
, and

n :=
(
m+d
m

)
. Let P ′0 ∈ Cs×s be a rank-r projector and

P 0 :=
[
P ′0 0
0 0

]
∈ Cn×n, (8)

Then, for the matrices Sk in the quasi-Hankel matrix com-
pletion (in Section 1.4), we have that P T

0SkP 0 = 0 for
any k = 1, . . . , N . If, in addition, r ≤

(
m+b d−1

2 c
m

)
, then

rank{A (P 0)} = N .
A straightforward proof can be found in [18].



3 Hankel matrix completion
For Hankel matrices (m = 1) the solution of the matrix
completion problem is known. We review the solution
based on the algebraic theory of Hankel matrices [12].
Definition 4 ([12]) Given a finite sequence of complex
numbers, h = [h0, . . . , hd]

T, the “first characteristic de-
gree” of h (denoted as hrank (h)) is the smallest number
r such that ∃q = [q0, q1, . . . , qr−1, qr]

T 6= 0 satisfying:

qT[hk, . . . , hk+r] = 0, ∀k ∈ {0, . . . , d− r}.

The corresponding vector q is called the “characteristic
vector” of h [12, p.81]. It defines a characteristic poly-
nomial of degree r with s distinct roots:

q(z) =

r∑
j=0

qjz
j = c ·

s∑
k=1

(z − λk)νk (9)

where νk denotes the multiplicity of root λk.
It is known [12] that for any h, hrank (h) ≤ d+2

2 ; more-
over, if hrank (h) < d+2

2 then the characteristic vector q
is unique (up to scaling). The characteristic polynomial
determines the form of h. For example, if qr 6= 0 and all
the roots λk are simple, then ∃ck: ht =

∑r
k=1 ckλ

t
k.

The main result on the completion (see [12]) is:
Proposition 5 Let h ∈ Cd+1 be a sequence with a char-
acteristic vector q with qr 6= 0. Then
• for the completion (3), the minimal rank is r =

hrank (h);
• a minimal rank completion is given by the recursion

hr+k = − 1

qr

r−1∑
j=0

qjhk+j , ∀k > d− r (10)

which we will call Canonical Completion. (If q is
nonunique, the canonical completion is nonunique);

• if ht =
∑r
k=1 ckλ

t
k, then the minimal rank comple-

tion (10) is given by the same formula.
It is easy to see that Theorem 1 treats just the case q =
[−λ, 1]T. Next, we consider arbitrary q with qr 6= 0.
Theorem 6 For any d and r < d+2

2 there exists a con-
stant ρ = ρ(d, r) > 0 such that for all h with hrank (h) = r
having a characteristic vector q with qr 6= 0, and |λk| < ρ,
the solution of (1) is unique and coincides with the canon-
ical completion (10).
Sketch of the proof.

The main idea is to show that for ∀ε > 0, ∃ρ > 0
such that for all corresponding h and with the completion
(10), the projector P on the span of HA(h) is close to
P 0 =

[
Ir 0
0 0

]
, i.e., ‖P − P 0‖2 < ε. The existence of such

ρ follows from results on eigenvalues of Toeplitz matrices.
By Lemma 3, we have that P 0 satisfies the optimality

conditions of Proposition 2. Finally by continuity, the
optimality conditions are also satisfied in a neighborhood
of P 0. The complete proof can be found in [18].

4 Quasi-Hankel matrices
Here we consider the general case (m > 1), and try to gen-
eralize the results of Section 3 to quasi-Hankel matrices.
It turns out that some results no longer hold true with the
same generality, as subsequently shown.

In Section 4.1 we describe solutions of matrix comple-
tion problems for a class of quasi-Hankel matrices. In
Section 4.2, we state an analogue of Theorem 6.

4.1 Completion
First, consider a class of low-rank quasi-Hankel matrices.
Lemma 7 Let A = {α1, . . . ,αM} ⊂ Nm, and let an ar-
ray {hα}α∈2A be given by hα =

∑r
k=1 ckz

α
k , for some

c1, . . . , cr ∈ C and z1, . . . ,zr ∈ Cm. Then the correspond-
ing quasi-Hankel matrix admits the factorization
HA(h) = VA(z1, ..,zr) Diag{c1, .., cr}V T

A (z1, ..,zr) (11)

where VA(z1, ..,zr) := [(zj)
αi ]

M,r
i,j=1 is the quasi-

Vandermonde matrix.
For instance, for A = N(2,2), r = 3 and zk =

[
λk
µk

]
, k =

0, 1, 2, the quasi-Vandermonde matrix has the form

VA(z1, z2, z3) =

 1 λ1 µ1 λ21 λ1µ1 µ2
1

1 λ2 µ2 λ22 λ2µ2 µ2
2

1 λ3 µ3 λ23 λ3µ3 µ2
3

T

Definition 8 Let A ⊂ Nm be a set of multi-indices. We
say that the points z1, . . . ,zr ∈ Cm are A-independent if

rank{VA(z1, . . . ,zr)} = r.

The notion of A-independence is equivalent to the fact
the monomials {xα}α∈A taken on the grid of points
{z1, . . . ,zr} form a set of #A = M vectors spanning a
linear space of dimension r. Hence, these monomials can
interpolate any function on this grid. Note also that if
z1, . . . ,zr are A-independent and c1, . . . , cr ∈ C \ {0},
then rank{HA(h)} = r in Lemma 7.

Finally, assume that the values {hα}α∈A are known and
we have to complete the remaining values {hα}α∈2A\A.
We describe below the solution based on the flat extension
theorem of [14] (see [18] for more details).

Proposition 9 Let A = N(m,d), d′ := bd2c, B := N(m,d′)

(it is easy to se that 2B ⊂ A). Assume that the val-
ues {hα}α∈A are given as in Lemma 7, where the points
z1, . . . ,zr are B-independent and c1, . . . , cr are nonzero.
Then, the following hold true

1. The rank of the minimal completion in Section 1.4
is r. A minimal completion is given by setting

hα =

r∑
k=1

ckz
α
k , α ∈ 2A \ A, (12)

this will be referred to as the Canonical Completion.
2. If d is odd, the completion given in (12) is unique.
3. If d is even, and z1, . . . ,zr are N(m,d′−1)-

independent, then the completion (12) is unique.



4.2 Nuclear norm minimization
Now we would like to prove similar results as those of
Section 3. First, we show that for quasi-Hankel matrices
of the form (11), where points z1, . . . ,zr are in general
position, the limit of certain projectors has the form (8).

Lemma 10 Let A = N(m,d), r ≤
(
m+d−1
m

)
, and

y1, . . . ,yr ∈ Cm be some points. Furthermore, assume
that there exists 0 ≤ d0 < d such that

(m+d0−1
m ) =: K < r ≤ (m+d0

m ) ,

and that there exists a set D, N(m,d0−1) ⊂ D ⊆
N(m,d0), #D = r such that the points y1, . . . ,yr are D-
independent. Let P (ρ) denote the projector onto the col-
umn space of VA(ρy1, . . . , ρyr). Then if r =

(
m+d0
m

)
,

lim
ρ→0

P (ρ) =
[
Ir 0
0 0

]
, (13)

and else if r <
(
m+d0
m

)
,

lim
ρ→0

P (ρ) =
[
IK 0 0
0 P 2 0
0 0 0

]
, (14)

where P 2 ∈ CL×L is a projector, with L =
(
m+d0
m

)
− K

and rank{P 2} = r −K.

The proof of Lemma 10 is based on the properties of
border bases of polynomial ideals. The main theorem is a
consequence of the previous lemmas [18], and the proof is
analogous to the proof of Theorem 6.

Theorem 11 Let d′′ := bd−12 c and r ≤ N ′′ :=
(
m+d′′

m

)
.

Furthermore, let y1, . . . ,yr ∈ Cm satisfy the condi-
tions of Lemma 10. Then there exist a constant ρ0 =
ρ0(y1, . . . ,yr) > 0 such that for any ρ: 0 < ρ < ρ0 and
points zk defined as zk = ρyk, the following holds true:
for any c1, . . . , cr and the initial elements of h defined in
Lemma 7, the canonical completion (12) is also the unique
solution of (1).

Note that unlike in Theorem 6, it is not possible to give
a universal bound on z1, . . . ,zr so that the projector P
on the column space of HA(h) is arbitrarily close to a P 0

as in Lemma 3 (due to fundamental issues in polynomial
interpolation). Instead, we showed that for a particular
arrangement of points in general position, the points can
be rescaled so that P is close to a certain P 0. Also, in the
case m = 1, Theorem 11 is a weak version of Theorem 6.
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