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Résumé – Cet article présente une méthode pour calculer une matrice de covariance entre deux signaux à valeur sur SO(3). Pour chacun, sa
moyenne est calculée. Après avoir projeté chaque signal dans le plan tangent de sa moyenne via l’application log, chaque projection est translatée
pour être dans le même plan tangent. Une matrice de covariance classique peut alors être calculée. Cette mesure peut alors être utilisée pour
l’étude du mouvement humain. Par exemple, en attachant des capteurs inertiels au cou et au bassin d’un grimpeur, il est possible d’estimer la
coordination du roulis de différentes parties de son corps, indicateur de performance du grimpeur.

Abstract – This article describe a method to measure a covariance matrix between two SO(3) based signals. For each one, the mean value is
computed. After applying the log map to project each signal in the tangent space of its mean, they are both translated to the same tangent space.
A classic covariance matrix can then be determined. Using IMUs (Inertial Measurement Unit) attached to the hip and the neck of an indoor
climber, it can be used to create an indicator of body kinematics coordination. Studying such coordinations might be useful for determining the
climber skills.

1 Introduction

Indoor climbing requires specific motor skills and coordina-
tion due to quadrupedal locomotion on a vertical plain using
only limb extremities such as fingers and toes. Analyzing the
rolling motion of the body is a good way to indicate the ability
of the climber to control and to exploit the gravitational forces.
For example, given the choice, beginners tend to climb with the
body face to the wall, leading to the emergence of a horizontal
hold grasping pattern, like "climbing a ladder".

Conversely, expert climbers use rolling motion of the trunk,
leading the emergence of alternating positions such as with the
body face on, side on or obliquely positioned relative to the
wall, somewhat like "opening/closing a door" [2]. This was as-
sumed to be a more skilled behavior, reflecting adaptation of
the body’s orientation to the wall, supporting fluent climbing
performance [1]. It was hypothesized that practicing during a
learning protocol where the route is design to alternate those
two behaviors can help beginners to learn side to the wall body
position.

Once an individual has learned these two behaviors, an indi-
vidual could both exploit the pre-existing behavioral repertoire
(i.e., trunk face to the wall) and use the newly learned beha-
vior (i.e., rolling motion of the trunk side or obliquely to the
wall), which can finally be observed by (i) greater rolling mo-

tion of trunk and (ii) greater variability of rolling motion of
trunk through a time-series. Such indicators have already been
measured in [2] for example.

However, it is also assumed that rolling motion of the trunk
could be achieved by rolling only the hip, only the shoulders,
simultaneously hips and shoulders but in opposite sides or si-
multaneously hips and shoulders but in the same direction. This
leads to a comparison between the orientation of the hips and
the orientation of the shoulders with respect to the climbing
wall. For each climb, IMUs attached to the hips and the shoul-
ders records data [3] which leads to the orientation of each
IMU. These orientations are SO(3) valued signals. Mathema-
tically speaking, it corresponds to finding a way to measure the
covariance between two SO(3) based signals.

The reference frame is the one obtained by placing a sen-
sor against the wall aligned vertically. For example, if the hip
orientation is I3, then the hips should be facing the wall.

2 Method

Despite that the results presented here are dedicated to SO(3),
they can be easily generalized for any Lie group.



2.1 Geometry of SO(3)

The Lie group used in this case is the special orthogonal
group of R3 :

SO(3) = {R ∈ R3|RRT = I, det(R) = 1}.

The Lie algebra associated to SO(3) is the set of skew sym-
metric matrix :

so(3) = {r ∈ R3|rT = −r}.

Let φ : R3 → so(3) be the bijection :

φ

 r0

r1

r2

 =

 0 −r2 r1

r2 0 −r0

−r1 r0 0

 . (1)

The algebra so(3) is the tangent space to SO(3) at the point
I . The tangent space at the pointR ∈ SO(3) is denoted TRSO(3).

The exp and log maps are the usual matrix exponential and
its inverse. The exp map applied from TRSO(3) is denoted
expR(.) = exp(.)R and the log map applied from R ∈ SO(3)
is denoted logR(.) = log(.RT ). It shall be noted that the trans-
lation is here done by multiplying to the right. This is required
as sensors might be mis-aligned (cf Section 2.3).

The geodesic distance d : SO(3)2 → R+ is defined as :

d(R1, R2) = ||φ−1(log(R−1
2 R1)||2.

2.2 Computing the mean
For Euclidean space based signals, centering the signals is

needed for computing the covariance. Here, a similar step is
realized. However, due to the geometry of SO(3), an intrinsic
mean is computed. Let Xt ∈ SO(3) be a time series for t ∈
[0, T ] running on SO(3) and let X̄ be the mean of {Xt}t∈[0,T ].

Computing the mean can be done via different algorithms.
Here, two methods are presented, based on the definition of the
mean [4], minimizing the function ψ :

X̄ = argminY

{
ψ(Y ) =

∫
t∈[0,T ]

d(Y,Xt)
2dt

}
(2)

An important property is that for a fixed rotationR ∈ SO(3),
we have : XR = X̄R, similarly to classic Euclidean geometry
[5].

2.2.1 Mean Shift

The usual method is the mean shift algorithm. It consists in
an iterative algorithm whose minimization steps are preformed
in a linear space [6]. Let X̄k be a sequence defined by Algo-
rithm 2.2.1.

Algorithm 1 Mean shift algorithm
X̄0 = XT/2

for Iteration k = 1 to kmax do
for t = 0 to T do

xt = φ−1 (logX̄k(Xt))
end for
x̄k = 1

T

∫
t
xtdt

X̄k = expX̄k−1(φ(x̄k))
end for

It can be proven that under proper conditions, the sequence{
X̄k
}
k

will converge to X̄ from Equation 2. The number of
iterations, here fixed to be kmax can also be modified to stop
the algorithm once the increments on X̄k become small en-
ough.

It should be noted that this method heavily requires the com-
putation of log. With a lot of samples, the computation, despite
being linear, can be quite time consuming. This is needed to
know the direction of the iteration to perform something simi-
lar to the gradient descent.

2.2.2 Simulated annealing

Instead of iterating to the proper direction to minimize equa-
tion 2, one could use a random step applied to several particles.
With enough particles, compared to the dimension of the Lie
group (in the case of SO(3), the dimension is 3), the direction
of the increment obtained from the mean shift algorithm will be
visited [7, 8]. Considering imax particles, for kmax iterations,
the algorithm is presented in Algorithm 2.2.2.

Algorithm 2 Simulated annealing algorithm
for Particle P i with i = 0 to imax do

P i = XT/2

for Iteration k = 1 to kmax do
• Candidate Ci = expP i(φ(ci))
with ci ∼ N (0, I3/ log(k + 1))
• Accept P i = Ci with
probability min

(
1, ψ(P i)/ψ(Ci)

)
end for

end for

Despite that this algorithm will require less computation of
exp and log, its output, the particles P i does not directly give
the mean but a sampling from the distribution of the mean on
SO(3). An additional step will be required but for long time
series {Xt}, the computation is being performed on a smaller
set of data.

Another difference between these methods is that the mean
shift only gives one value. If the time series is not stationary, it
might completely bias the covariance in the next steps. The si-
mulated annealing can be used in the case of piece-wise constant



mean.

2.3 Covariance
For two SO(3) based time series Xt and Yt, we define :

xt =logX̄(Xt)

yt =logȲ (Yt)
(3)

By rewriting logX̄(Xt) = log(XtX̄
−1), one can easily see

the two steps performed via this operation :
— Centering : By multiplying by X̄−1, the data are transla-

ted around I3. This is the equivalent of centering the data
by translating the time series in classic covariance com-
putation. The main interest now is that the time series xt
and yt are now both in the same tangent space TISO(3).
They can therefore be compared.

— Linearization : The log operation realizes the lineariza-
tion of the time series sample by sample. The lineariza-
tion step should be performed for each sample with res-
pect to the intrinsic mean contrary to an anti-development
solution in order to prevent the creation of a drift due to
a long term integration [9].

As xt and yt are both in TISO(3) = so(3), φ−1 can be
applied and the covariance is then defined as :

C(X,Y ) = cov
(
φ−1(xt), φ

−1(yt)
)

(4)

where cov is the usual covariance in R3, xt is defined at Equa-
tion 3 and φ is defined at Equation 1.

It shall be noticed that in the case of a badly oriented sensor,
the proper signal Xt is recorded as XtR, where R is the rota-
tion offset. By denoting xrt the linearization of XtR given by
Equation 3, we have :

xrt = logX̄R(XtR)

= logX̄R(XtR)

= logX̄R(XtR(X̄R)−1)

= logX̄R(XtX̄
−1)

= xt.

Therefore, a rotation offset does not affect the measure of the
correlation.

3 Application
An application to a recorded signal is presented in Figure

2 for the sensor attached to the hips. Based on these lineari-
zed signals, a covariance matrix can be determined, based on
Equation (4) :

Hips ↓ Neck→ Ox′ Oy′ Oz′

Ox 0.22 0.05 −0.01
Oy −0.04 −0.01 0.02
Oz 0.06 0.02 −0.01

FIGURE 1 – Sensors attached to a climber. Only the ones cir-
cled in red are used in this article.

In this case, the highest covariance is around the Ox-axis
(vertical) for the hips and the Ox axis for the neck. This indi-
cates that the hips and the shoulders are synchronized in their
rolling motion. Even if not presented here, this method could
also be used to determine the variance of each rotation signal,
based on the variance definition from [2].

A short study based on one climber during a 17 sessions trai-
ning program shows a large decrease in the diagonal terms of
the covariance matrix, mainly for the component around the
Ox axis. For each sessions, three different climbing conditions
were asked to the climber :

— Spontaneous climbing (no particular instructions)
— Climbing face to the wall
— Climbing side to the wall

Session Condition Ox/Ox′ Oy/Oy′ Oz/Oz′

1 Spontaneous 0.20 0.06 0.06
1 Face 0.25 0.06 0.11
1 Side 0.31 0.08 0.11

17 Spontaneous 0.02 0.05 0.05
17 Face 0.03 0.05 0.06
17 Side 0.06 0.04 0.10

Results of the training sessions show a large decrease in the
covariance terms. This seems to indicate that the climber tends
to make uncorrelated shoulder and hip movements, offering
him a larger range of possible motions, by releasing another
degree of freedom.



FIGURE 2 – (Top) : SO(3) based signal sample is an orthonor-
mal frame. Each color represents the evolution of each canoni-
cal vector. Final vectors are plotted. (Below) : Linearization of
the top signal around its mean.

4 Limitations and openings

One limiting aspect to Equation 4 comes when the data is
not stationary or when the data is not localized enough to be
linearized. In the case when the data drives away from the in-
trinsic mean, the log map is no more a bijection and centering
the data is no longer possible with the presented methods. A so-
lution to this problem would be, similarly to Rn-based signals,
to perform local covariance on a time segment short enough to
consider the data localized enough. This can be explicitly writ-
ten by adding a weight function into Equation 2 for windowing
the time series.

Despite that Equation 4 is defined on SO(3), it can easily
be generalized to any Lie group. It would also be possible to
extend this method to Riemannian manifolds. Computing the
mean can be done in a very similar manner and therefore, for a
time series Xt ∈ M, it can be mapped as a TX̄M-based time
series. The main issue comes from the translation, as it can-
not be done by a simple multiplication. Given two time series,
Xt and Yt, one needs to compare elements from TX̄M with
elements from TȲM. One way to do it would be to transport
the elements from TX̄M from X̄ to Ȳ along a geodesic using
parallel transport. Its reversibility ensures the symmetry of the
method.

5 Conclusion
The definition of the covariance presented at Equation 4 gives

a way to measure the synchronization between two SO(3) ba-
sed signals. This measure is useful for the study of body ki-
nematics coordination for indoor climbing. A study applied to
several climbers is in preparation to measure of effects of lear-
ning protocols on body coordination and skills.

It should be noted that this method works when the signals
are localized around their means and that in other cases, the li-
nearization might not be properly defined.

The definitions used here can easily be extended to any Lie
groups and can be modified for processing Riemannian mani-
fold based signals, using a parallel transport between the tan-
gent spaces at the mean points.
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