Localisation directe par un système MIMO massif

Nil GARCIA¹, Henk WYMEERSCH¹, Erik G. LARSSON², Alexander M. HAIMOVICH³, Martial COULON⁴

¹Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Suède

²Division of Communication Systems, Department of Electrical Engineering (ISY), Linköping University, Linköping, Suède

³Center for Wireless Communications and Signal Processing Research, New Jersey Institute of Technology (NJIT), Newark, USA

⁴INP-ENSEEIHT/IRIT, Université de Toulouse, France

nilg@chalmers.se, henkw@chalmers.se, erik.g.larsson@liu.se, haimovich@njit.edu, martial.coulon@enseeiht.fr

Résumé – Nous considérons le problème de localisation de cible pour des canaux multi-trajets par un réseau massif d'antennes. Contrairement aux méthodes indirectes utilisant la multilatération, nous proposons une approche directe basée sur une représentation parcimonieuse du problème, qui exploite les propriétés différentes des trajets directs et indirects. Cette méthode présente des performances supérieures à celles des méthodes indirectes, ou des méthodes directes conçues pour des canaux non sélectifs, et se révèle robuste au blocage des trajets directs.

Abstract – We address the problem of localizing sources in multipath channels using massive MIMO systems. Contrary to indirect methods using multilateration, we propose a direct localization method, based on a sparse problem modelling, that exploits the differences in the properties of the line of sight versus multipath components. This method exhibits performances better than those obtained with indirect techniques, or with direct techniques derived for non selective channels, and is robust to situations with blocked direct path.

Introduction 1

Les systèmes MIMO massifs, employant un grand nombre d'antennes et considérés avec un fort intérêt pour les télécommunications (systèmes 5G notamment), peuvent également se révéler très pertinents pour la localisation de haute précision [1]. Une approche classique de localisation, en 2 étapes, consiste à estimer tout d'abord les angles d'arrivée (angles-of-arrival -AOA) sur toutes les stations de base (base station - BS), puis d'effectuer la localisation par triangulation. Cependant, en environnements multi-trajets denses (urbains par exemple), les techniques basées uniquement sur les AOA peuvent conduire à de fortes imprécisions [2]. Un réseau massif d'antennes permet d'estimer précisément les AOA de chaque composante multitrajet, sous réserve de pouvoir identifier la ligne de vue directe (line-of-sight - LOS) [3], si celle-ci existe, ce qui n'est pas toujours le cas. Une autre solution consiste à centraliser toutes les estimations d'AOA, et d'effectuer une association de données [4], ce qui mène à un problème NP-difficile.

Une autre approche consiste à effectuer une localisation directe, dans laquelle la position de la source est estimée conjointement à l'estimation des autres paramètres du système. Des techniques basées sur les AOA ont été proposées [5], mais ne fonctionnent que pour des canaux sans multi-trajet, avec seulement une composante LOS. Des méthodes directes ont été conçues pour les environnements multi-trajet [6], mais ne sont pas adaptées l'énergie de la composante LOS ne doit pas s'annuler à l'insà l'utilisation des AOA et aux systèmes MIMO massifs. Cet article présente une nouvelle technique, appelée Direct Source Localization (DiSouL), qui exploite la haute résolution angu-

laire apportée par le réseau massif d'antennes. Cette méthode se base sur une modélisation parcimonieuse du problème, qui permet d'estimer la position de la cible sans supposer que la composante directe soit la plus puissante, contrairement aux méthodes existantes basées sur les AOA. Une présentation plus détaillée de cette méthode est donnée dans [7].

2 Modélisation du signal

On considère un scénario bi-dimensionnel constitué d'une cible positionnée au point $\mathbf{p} = [p^x, p^y]^T$ dans une zone \mathcal{R} connue a priori, et de L BS, équipées chacune de S_l antennes, placées aux points $\tilde{\mathbf{p}}_l = [\tilde{p}_l^x, \tilde{p}_l^y]^{\mathrm{T}}$ supposés éloignés de la cible. Soit $\mathbf{a}_{l}(\theta)$ le vecteur des réponses du réseau à la BS lpour une trajectoire arrivant avec un angle θ . Pour un signal émis s(t) (supposé connu en réception), le signal $\mathbf{z}_l^{\text{MF}}(t)$ reçu sur la BS *l* après filtrage adapté à s(t), et échantillonné à un instant t_l , s'exprime sous la forme [7]

$$\bar{\mathbf{z}}_{l} = \mathbf{z}_{l}^{\mathrm{MF}}(t_{l}) = \bar{\alpha}_{l} \,\mathbf{a}_{l} \left(\theta_{l}(\mathbf{p})\right) + \sum_{m=1}^{P_{l}} \bar{\alpha}_{l}^{m} \,\mathbf{a}_{l} \left(\theta_{l}^{m}\right) + \bar{\mathbf{n}}_{l} \quad (1)$$

où $\bar{\alpha}_l$, θ_l et τ_l sont les gain (complexe), AOA et temps d'arrivée (TOA) de la composante directe (LOS), et $\bar{\alpha}_{1}^{m}, \theta_{1}^{m}$, et τ_{1}^{m} ceux de la m-ème composante indirecte (NLOS). Tous ces paramètres sont supposés inconnus. Afin de s'assurer que $\bar{\alpha}_l \neq 0$, tant t_l . L'un des enjeux de cette étude est de déterminer ces instants t_l ainsi que les TOA à partir des signaux $\{\mathbf{z}_l^{\text{MF}}(t)\}_{l=1}^L$, afin d'estimer **p** à partir des $\{\bar{\mathbf{z}}_l\}_{l=1}^L$.

3 Approche proposée

3.1 Principe

L'estimation des TOA cherche non pas à obtenir une estimation précise, mais à contraindre l'espace de recherche. Cette estimation peut donc être grossière et doit être positivement biaisée, càt telle que $\hat{\tau}_l > \tau_l$. D'autre part, on cherche, à partir des $\{\bar{z}_l\}_{l=1}^L$ considérés conjointement, à séparer les composantes LOS et NLOS à chaque BS, ce qui suppose (au moins dans un premier temps) l'existence de cette composante LOS. Ainsi, notre méthode consiste tout d'abord à estimer grossièrement les TOA, puis à chercher la position p par la résolution d'un problème d'optimisation convexe dans un ensemble fixé par l'estimation des TOA et par la séparation entre composantes LOS/NLOS. Au contraire des méthodes indirectes qui estiment les AOAs puis en déduisent la position de la cible, cette méthode, bien que basée sur les AOA, n'estime pas ceux-ci (pour les composantes LOS) et estime directement la position p.

3.2 Estimation des TOA

Pour l'estimation des TOA des composantes LOS, nous proposons de généraliser à des antennes multiples la technique par filtrage adapté seuillé [8] qui a l'avantage d'être simple mais surtout de fournir des estimations positivement biaisées en environnement multi-trajets. Il s'agit de sélectionner le premier instant pour lequel le signal est globalement (i.e. sur l'ensemble des antennes) supérieur à un certain seuil. Plus précisément, pour la BS l, soit $z_l^{NC}(t) = ||\mathbf{z}_l^{MF}(t)||_2^2$. Le TOA estimé $\hat{\tau}_l$ est alors défini comme l'instant du premier maximum local de $z_l^{NC}(t)$ pour lequel $z_l^{NC}(t) \ge \eta$. En pratique, les valeurs de $z_l^{NC}(t)$ ne peuvent s'obtenir qu'à des instants discrétisés, mais une interpolation parabolique peut alors être utilisée [9]. Le seuil η s'obtient à partir d'une probabilité de fausse alarme P_{FA} donnée (voir détails dans [7]). L'estimation des TOA permet de restreindre la zone de recherche de la cible, passant de $\mathcal{R} \ \mathcal{R} \cap \mathcal{F}$, où

$$\mathcal{F} = \{ \boldsymbol{\pi} \in \mathbb{R}^2 : \| \boldsymbol{\pi} - \tilde{\mathbf{p}}_l \|_2 \le c \, \hat{\tau}_l, \forall l \}$$
(2)

Dans le cas où $\mathcal{F} = \emptyset$ (si les TOA sont sous-estimés au lieu d'être sur-estimés), on peut étendre \mathcal{F} en augmentant les valeurs $\hat{\tau}_l$ d'une valeur constante. Cette réduction de l'espace de recherche permet de réduire la complexité du problème d'optimisation et d'améliorer la précision de la localisation.

3.3 Instant d'échantillonnage

Les instants d'échantillonnage $\{t_l\}_{l=1}^L$ doivent être choisis à un instant où la composante LOS est aussi forte que possible et les composantes NLOS les plus faibles. Une solution serait de prendre $t_l = \hat{\tau}_l$, mais comme les $\hat{\tau}_l$ sont biaisés, on risquerait d'échantillonner à un instant où le trajet direct est affaibli, et inversement pour les trajets indirects. Nous proposons plutôt une méthode empirique où t_l est défini comme le premier instant où le signal $\{\mathbf{z}_l^{\text{MF}}(t)\}$ passe au-dessus du seuil η , i.e.

$$\hat{\tau}_l = \min\left\{t > 0 | z_l^{\text{NC}}(t) \ge \eta\right\}.$$
(3)

ce qui implique nécessairement que $t_l \leq \hat{\tau}_l \ \forall l$. Cette méthode a été validée numériquement par de nombreuses simulations.

3.4 Localisation

On propose d'effectuer une localisation approchée sur une grille, ce qui permet de placer le problème dans un cadre où la parcimonie et la parcimonie par ligne peuvent être exploitées. Pour cela, on définit une grille uniforme de points dans la zone $\mathcal{R} \cap \mathcal{F}$, soit $\mathcal{L} = \{\pi_1, \dots, \pi_Q\} \subset \mathcal{R} \cap \mathcal{F}$, ainsi qu'une grille de M_l angles pour chaque BS, i.e. $\mathcal{A}_l = \{\vartheta_1, \ldots, \vartheta_{M_l}\} \subset$ $[0, 2\pi)$. On suppose que la cible est positionnée sur un des points de la grille et que les AOAs des trajets indirects appartiennent aux grilles d'angles \mathcal{A}_l , pour chaque BS. Soit $\mathbf{X} \in$ $\mathbb{C}^{Q \times L}$ la matrice dont l'élément x_{ql} représente le gain complexe du trajet direct de la position π_q de la grille à la BS l. Soit y_{ml} le gain complexe d'un trajet indirect arrivant à la BS l avec un angle ϑ_m . Alors, par définition, 1 seule ligne de X est nonnulle, et $y_{ml} \neq 0$ si et seulement si ϑ_m est égal à l'AOA d'un trajet indirect arrivant à la BS l. Ainsi, si la grille est suffisamment fine, X est parcimonieuse en ligne, et y_l est parcimonieux pour tout l. Il est connu [10] que la parcimonie en ligne est exhibée par la norme $\ell_{2,1}$, i.e. $\|\mathbf{X}\|_{2,1} = \sum_{q=1}^{Q} \sqrt{\sum_{l=1}^{L} |x_{ql}|^2}$, et que la parcimonie est exhibée par la norme ℓ_1 , i.e. $\|\mathbf{y}_l\|_1 =$ $\sum_{m=1}^{M_l} |y_{ml}|$, où $\mathbf{y}_l = [y_{1l}, \dots, y_{M_l l}]^{\mathrm{T}}$. De fait, nous proposons de résoudre le problème d'optimisation suivant :

$$\min_{\mathbf{X}, \mathbf{y}_{l}} \quad w \|\mathbf{X}\|_{2,1} + \sum_{l=1}^{L} \|\mathbf{y}_{l}\|_{1}$$
(4a)

avec
$$\sum_{l=1}^{L} \|\bar{\mathbf{z}}_l - \hat{\mathbf{z}}_l\|_2^2 \le \epsilon$$
(4b)

où
$$\hat{\mathbf{z}}_{l} = \sum_{q=1}^{Q} x_{ql} \mathbf{a}_{l} \left(\theta_{l}(\boldsymbol{\pi}_{q}) \right) + \sum_{m=1}^{M} y_{ml} \mathbf{a}_{l} \left(\vartheta_{m} \right), \forall l.$$
 (4c)

Ce problème est de type second-order cone program, pour lequel des algorithmes efficaces peuvent être appliqués ici. Le principe du problème (4) est de chercher le nombre le plus réduit de positions de la cible, et si possible 1 seule (par la minimisation de $\|\mathbf{X}\|_{2,1}$), ainsi que le nombre de multi-trajets (par la minimisation de $\sum_{l=1}^{L} \|\mathbf{y}_l\|_1$), qui puissent décrire les observations $\{\bar{\mathbf{z}}_l\}$. Ainsi, le paramètre w dans (4a) permet d'effectuer un compromis entre ces 2 types de parcimonie. Pour wfaible, le problème va favoriser une solution où toute l'énergie est portée par les composantes LOS, alors que pour w grand les composantes indirectes seront privilégiées. En effet, pour $w \to 0$, le coût d'une solution LOS devient infiniment grand par rapport à celui d'une solution LOS. On peut en fait montrer (ce qui n'est pas présenté ici pour manque de place) qu'une condition suffisante pour s'assurer de bien retrouver la position de la cible est de prendre $w \in \sqrt{L-1}$, \sqrt{L} [7]. Par ailleurs, on peut également montrer que le seuil ϵ dans (4b) est de la forme $\epsilon = \frac{\sigma^2}{2} F_{2\sum_{l=1}^{l} S_l}^{-1}(\gamma)$, où γ est la probabilité de bonne reconstruction à ϵ près (par exemple, $\gamma = 0.99$) [7]. Le problème (4), et notamment le choix de w, supposent qu'il existe L trajets directs. Si l'une des BS n'est pas en vue directe, la cible ne correspond plus qu'à L-1 trajets directs, et sa position n'est plus solution de (4). On propose alors une approche itérative décrite

dans l'Algorithme 1 permettant d'adapter la méthode à cette situation. Ainsi, soit L^* le nombre de BS en vue directe de la cible $(L^* < L)$, et soit \hat{L} une estimation de L^* . On commence par poser $\hat{L} = L$, fixer $w \in \sqrt[3]{\hat{L} - 1}, \sqrt{\hat{L}}$ et résoudre (4). Celui-ci ne renvoie une solution non-nulle que s'il existe effectivement \hat{L} BS en vue directe de la cible [7]. Ainsi, si $\mathbf{X} = \mathbf{0}$, on réduit \hat{L} et on réitère le processus. Si $\mathbf{X} \neq \mathbf{0}$, $\hat{\mathbf{p}}$ est définie comme la position correspondant aux plus forts gains [7].

Algorithm 1 Localisation directe

1: On pose $\hat{L} = L$, $\hat{\mathbf{p}} = \emptyset$, et $\epsilon = \frac{\sigma^2}{2} F_{2\sum_{l=1}^{L} S_l}^{-1}(\gamma)$ 2: si $\sum_{l=1}^{L} \|\bar{\mathbf{z}}_{l}\|_{2}^{2} > \epsilon$ alors tant que $\hat{\mathbf{p}} = \emptyset$ and $\hat{L} > 1$ faire 3: on pose $w = \sqrt{\hat{L} - 0.5}$ 4: on résout (4) pour obtenir \mathbf{X} et $\mathbf{y}_l, \forall l$ 5: si ($\mathbf{X} \equiv \mathbf{0}$) alors 6: $\hat{L} \leftarrow \hat{L} - 1$ 7: sinon 8: 9: $\hat{q} = \arg\max_{q} \left\| \mathbf{X}_{q,:} \right\|_{2}$ 10: $\hat{\mathbf{p}} = \boldsymbol{\pi}_{\hat{a}}$ fin si 11: fin tant que 12: sinon 13: on estime $\hat{\mathbf{p}}$ selon [7] 14: 15: fin si

Grilles adaptatives 4

Les grilles devant être suffisamment fines pour permettre une estimation suffisamment précise, sans toutefois générer une complexité trop importante, on propose là aussi une approche adaptative consistant à partir de grilles assez grossières puis de les affiner au voisinage des solutions de (4) successivement obtenues. Soient $\mathcal{L}^{(k)}$ et $\mathcal{A}_l^{(k)}$ (pour la BS *l*) les grilles à l'itération $k. \mathcal{L}^{(0)}$ et $\mathcal{A}_{l}^{(0)}$ sont définies uniformément sur $\mathcal{R} \cap \mathcal{F}$ et $[0, 2\pi)$,

$$\operatorname{grid}(\hat{\Pi}, \delta) = \{ \boldsymbol{\pi} \in \mathbb{R}^2 : \boldsymbol{\pi} = \hat{\boldsymbol{\pi}} + [i \ j]^{\mathrm{T}} \delta,$$
 (5)

$$\hat{\pi} \in \hat{\Pi}, i, j \in \{-2, -1, 0, 1, 2\}\}$$

$$\operatorname{grid}(\hat{\Theta}_{l}, \delta) = \{ \theta \in [0, 2\pi) : \theta = \hat{\theta} + i\delta, \qquad (6)$$
$$\hat{\theta} \in \hat{\Theta}_{l}, i \in \{-2, -1, 0, 1, 2\} \}.$$

On pose alors $\mathcal{L}^{(k)} = \operatorname{grid}(\hat{\Pi}, \pi_{\operatorname{res}}/2^k)$ et $\mathcal{A}_l^{(k)} = \operatorname{grid}(\hat{\Theta}_l, \vartheta_{\operatorname{res}}/2^k)$ $\cup\{\left[\theta_{l}\left(\boldsymbol{\pi}\right)\right]_{\vartheta_{\mathrm{res}}/2^{k}}:\boldsymbol{\pi}\in\hat{\Pi}\}\text{, où }[x]_{y}\text{ est le multiple de }y\text{ le plus}$ proche de x. Ainsi chaque nouvelle grille contient les points estimés à l'itération précédente, ainsi que des points voisins, ce qui assure que $f_{\rm opt}^{(k+1)} < f_{\rm opt}^{(k)}$, où $f_{\rm opt}^{(k)}$ est la valeur optimale de (4) à la k-ème itération. Les itérations s'arrêtent lorsque $f_{ont}^{(k)}$ n'évolue quasiment plus, i.e. si $\frac{|f_{opt}^{(k-1)} - f_{opt}^{(k)}|}{f_{opt}^{(k-1)}} < \beta$ avec β petit.

L'algorithme complet est finalement donné dans Algorithme 3.

Algorithm 2 Raffinage des grilles

1: $\mathcal{L}^{(0)}$ et $\mathcal{A}_{l}^{(0)}, \forall l$ uniformes sur $\mathcal{R} \cap \mathcal{F}$ et $[0, 2\pi)$; k = 02: tant que $\frac{|f_{\text{opt}}^{(k-1)} - f_{\text{opt}}^{(k)}|}{f_{\text{opt}}^{(k-1)}} \ge \beta$ faire résoudre (4) avec $\mathcal{L} = \mathcal{L}^{(k)}$ et $\mathcal{A}_l = \mathcal{A}_l^{(k)}$ 3:

- extraire positions $\hat{\Pi} = \{\pi_q^{(k)} \in \mathcal{L}^{(k)} : \|\mathbf{x}_q^{(k)}\|_2 \neq 0\}$ extraire angles $\hat{\Theta}_l = \{\vartheta_{ml}^{(k)} \in \mathcal{A}_l^{(k)} : y_{ml}^{(k)} \neq 0\}, \forall l$ on pose $\mathcal{L}^{(k)} = \operatorname{grid}(\hat{\Pi}, \pi_{\operatorname{res}}/2^k)$ 4:
- 5:
- 6:
- réduction de la grille $\mathcal{L}^{(k)}$ par estimation des TOA 7:

8. on pose

$$\mathcal{A}_{l}^{\left(k
ight)}=\mathrm{grid}(\hat{\Theta}_{l},artheta_{\mathrm{res}}/2^{k})\cup\left\{\left[heta_{l}\left(oldsymbol{\pi}
ight)
ight]_{artheta_{\mathrm{res}}}/2^{k}:oldsymbol{\pi}\in\hat{\Pi}
ight\}$$

9: fin tant que

Algorithm 3 DiSouL

- 1: fixer η pour une P_{FA} souhaitée (e.g., $P_{\text{FA}} = 10^{-2}$)
- 2: déterminer les estimations TOAs ${\hat{\tau}_l}_{l=1}^L$ selon (3)
- initialiser les grilles de positions $\mathcal{L}^{(0)}$ et d'angles $\mathcal{A}_l^{(0)}, \forall l$ 3:
- réduire la grille de positions par l'estimation des TOA 4:
- 5: calcul des instants $\{t_l\}_{l=1}^L$
- échantillonnage aux instants $\{t_l\}_{l=1}^L$ après F.A. selon (1)
- 7: estimation de la localisation $\hat{\mathbf{p}}$ par l'algorithme 1 où le point 5 est remplacé par l'algorithme 2

5 Simulations

Notre méthode est comparée ici aux techniques suivantes [7]: 1. SR-LS, basée sur les TOA estimés par la méthode donnée en 3.2. 2. IV, basée sur les AOA obtenus par des techniques de formation de faisceau, qui sélectionne l'angle associé au plus fort pic. 3. l'estimateur Stansfield, qui est une méthode hybride TOA-AOA. 4. DPD [5], technique hybride TOA-AOA de localisation directe conçue pour des environnements sans multitrajet. Les résolutions initiales pour l'algorithme DiSouL sont fixées à $\pi_{\rm res} = 5m$ et $\vartheta_{\rm res} = 5.71^{\circ}$. La demi-bande est égale à B = 30 MHz, et on fixe $10 \log_{10} \frac{E}{N_0} = 10 dB$, où E représente avec les résolutions respectives π_{res} et ϑ_{res} . On définit les opérateurs j'énergie de la composante LOS avant échantillonnage (même énergie pour tout l), et N_0 est la densité spectrale du bruit sur chaque antenne. A chaque simulation, les paramètres du canal sont générés aléatoi-rement selon [11], et la position de la cible est tirée uniformément dans la zone de recherche de dimension 100x100m, comportant 1 BS à chaque 4 coin. En moyenne, 99.9% de l'énergie du signal (1) est concentrée sur 8 trajets. Notons qu'on pourrait calculer une borne de Cramér-Rao pour ces estimateurs, mais celle-ci ne serait pas pertinente car valide simplement pour les estimateurs non-biaisés, ce qui n'est pas le cas ici. Ainsi on peut montrer, en se basant sur [12], que cette borne serait supérieure à la précision de nos estimateurs.

> La figure 1 montre la fonction de répartition de l'erreur de localisation. On peut constater que la méthode DiSouL présente de bien meilleures performances que les autres méthodes en terme de probabilité de haute précision. La probabilité de précision sub-métrique en fonction de E/N_0 est représentée sur la figure 2, où on voit que les performances de DiSouL sont meilleures

pour la plupart des valeurs de E/N_0 . La méthode SR-LS donne des résultats médiocres à cause du biais positif des estimations de TOA. Les méthodes basées sur les AOA sont un peu meilleures, mais restent en deça des 2 méthodes de localisation directe. Pour $E/N_0 < -5$ dB, DPD est meilleure que DiSouL car dans ce cas le filtrage adapté seuillé utilisé pour estimer les TOA peut ne détecter aucun signal. La probabilité de précision sub-métrique est représentée sur la fig. 3 en fonction du nombre d'antennes S_l à chaque BS. La taille du réseau d'antennes croît linéairement par rapport à S_l , ce qui améliore également la résolution angulaire. Cette amélioration permet à DiSouL de mieux distinguer les composantes multi-trajets, ce qui explique sa meilleure précision par rapport à d'autres méthodes.

6 Conclusion

Cet article a présenté une méthode de localisation directe dans un environnement multi-trajet par un réseau massif d'antennes. L'approche proposée permet d'améliorer sensiblement la précision de la localisation pour des signaux à bande étroite par rapport à d'autres techniques, au prix d'un temps de traitement plus élevé [7]. Cette méthode pourrait être généralisée à un problème 3D, ce qui engendrerait une augmentation de la complexité calculatoire.

Références

- A. Guerra, F. Guidi, and D. Dardari, "Position and orientation error bound for wideband massive antenna arrays," in *IEEE Int. Conf. on Communication Workshop*, 2015.
- [2] V. Savic and E. G. Larsson, "Fingerprinting-based positioning in distributed massive MIMO systems," in *IEEE* 82nd Vehicular Technology Conference, 2015, pp. 1–5.
- [3] T. Lv, F. Tan, H. Gao, and S. Yang, "A beamspace approach for 2-D localization of incoherently distributed sources in massive MIMO systems," *Signal Processing*, vol. 121, pp. 30–45, 2016.
- [4] K. R. Pattipati, S. Deb, Y. Bar-Shalom, and R. B. Washburn Jr, "A new relaxation algorithm and passive sensor data association," *IEEE Transactions on Automatic Control*, vol. 37, no. 2, pp. 198–213, 1992.
- [5] A. J. Weiss, "Direct position determination of narrowband radio frequency transmitters," *IEEE Signal Processing Letters*, vol. 11, no. 5, pp. 513–516, 2004.
- [6] O. Bialer, D. Raphaeli, and A. J. Weiss, "Maximumlikelihood direct position estimation in dense multipath," *IEEE Transactions on Vehicular Technology*, vol. 62, no. 5, pp. 2069–2079, 2013.
- [7] N. Garcia, H. Wymeersch, E. G. Larsson, A. M. Haimovich, and M. Coulon, "Direct localization for massive MIMO," *IEEE Trans. on Signal Processing*, vol. à paraître, 2017.
- [8] D. Dardari, C.-C. Chong, and M. Z. Win, "Thresholdbased time-of-arrival estimators in UWB dense multipath channels," *IEEE Transactions on Communications*, vol. 56, no. 8, pp. 1366–1378, 2008.

FIGURE 1 – Fonction de répartition de l'erreur de localisation pour $E/N_0 = 10 dB$ et B = 30 MHz.

FIGURE 2 – Probabilité de précision sub-métrique vs. E/N_0 pour B = 30MHz.

- [9] I. Cespedes, Y. Huang, J. Ophir, and S. Spratt, "Methods for estimation of subsample time delays of digitized echo signals," *Ultrasonic imaging*, vol. 17, pp. 142–171, 1995.
- [10] L. Jacob, G. Obozinski, and J.-P. Vert, "Group lasso with overlap and graph lasso," in 26th Annual Int. Conf. on Machine Learning. ACM, 2009, pp. 433–440.
- [11] Q. H. Spencer, B. D. Jeffs, M. Jensen *et al.*, "Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel," *IEEE J. on Sel. Areas in Communications*, vol. 18, no. 3, pp. 347–360, 2000.
- [12] H. B. Lee, "The Cramér-Rao bound on frequency estimates of signals closely spaced in frequency," *IEEE Transactions on Signal Processing*, vol. 40, no. 6, 1992.

FIGURE 3 – Probabilité de précision sub-métrique vs. nb d'antennes pour $E/N_0 = 10dB$ et B = 30MHz.